Programming Guide

Agilent Technologies
PSG Family Signal Generators

This guide applies to the signal generator models and associated serial number prefixes
listed below. Depending on your firmware revision, signal generator operation may vary
from descriptions in this guide.

E8241A: US4124
E8244A: US4124

E8251A: US4124
E8254A: US4124

Agilent Technologies

Part Number: E8251-90025
Printed in USA
February 2002

© Copyright 2001, 2002 Agilent Technologies Inc.

Contents

1. Getting Started e 1
Introduction to Remote Operation 2
INterfaces. 3
IO Libraries. 3
Programming Language.ottt e 4
USINg GPIB 5
1. Installing the GPIB Interface Card. i 5
2. Selecting 10 Libraries for GPIB. e 7
3. Setting Up the GPIB Interface. e 7
4. Verifying GPIB Functionality e 8
GPIB INnterface Terms. 8
GPIB Function Statements 9
USING LAN . .o e e 14
1. Selecting 10 Libraries for LAN 14
2. Setting Up the LAN Interface i i 15
3. Verifying LAN Functionality e 15
UsiNg VXI-1d o 17
Using Sockets LAN 19
Using TELNET LAN ..o 20
USiNg FTP 24
USING RS-232 . ..o 26
1. Selecting 10 Libraries for RS-232 i e 26
2. Setting Up the RS-232 Interface i 27
3. Verifying RS-232 Functionality 28
Character Format Parameters. 29
2. Programming Examples. e 31
Using the Programming Examples 32
Programming Examples Development Environment. 33
Running C/C++ Programming Examples 33
GPIB Programming Examples 34
Before Using the Examples 34
Interface Check using Agilent BASIC i 35
Interface Check Using NI-488.2and C++. i 36
Interface Check using VISAand C e 37
Local Lockout Using Agilent BASIC e e 38
Local Lockout Using NI-488.2 and C++ e 39
Queries Using Agilent BASIC e 41

Contents

Queries Using NI-488.2 and C++. 43
QueriesUsing VISA and C. o 45
Generating a CW Signal Using VISAand C........ a7
Generating an Externally Applied AC-Coupled FM Signal Using VISAand C 49
Generating an Internal AC-Coupled FM Signal Using VISAandC............. 51
Generating a Step-Swept Signal Using VISAand C 53
Saving and Recalling States Using VISAand C.......... 55
Reading the Data Questionable Status Register Using VISAandC............. 57
Reading the Service Request Interrupt (SRQ) Using VISAandC 60
LAN Programming Examples 64
Before Using the Examples 64
VXI-11 Programingo et e e 65
Sockets LAN Programming using Ct 69
Sockets LAN Programming USing PERL i, 89
Sockets LAN Programming Using Java it 91
RS-232 Programming Examples. 93
Before Using the Examples 93
Interface Check Using Agilent BASIC 94
Interface Check Using VISA and C i e 95
Queries Using Agilent BASIC 97
Queries Using VISA and C. 98
3. Programming the Status Register System. 101
OVBIVIBW . . o et e e 102
Status Register Bit Values. e 104
Accessing Status Register Information. 105
Determining What to Monitor e e 105
Deciding HOwW to MONitor o 106
Status Register SCPI Commands e 108
Status Byte GroUD 110
Status Byte Register. e e 111
Service Request Enable Register. 112
STAtUS GrOUPS. . . o ottt e e e e e 113
Standard Event Status GroUp oo oottt 114
Standard Operation Status Group.ttt e 117
Data Questionable Status Group.ttt 120

Contents

Data Questionable Power Status Groupttt 124
Data Questionable Frequency Status Group, 127
Data Questionable Modulation Status Group., 130
Data Questionable Calibration Status Group. 133
4. Command Reference. i e 137
Command Reference Information. i, 138
SCPI Command LiStingsot e e 138
Softkey and Hardkey Cross Reference 138
Supported Signal Generator SErieS.ttt e 138
SCPI BaSiCS 139
COMIMON TS . . o oottt e e e e e e 139
CommaNd SYNEaX . . . oo e 140
ComMMaANd TYPES . o ot it e 142
ComMMaANd TrEE . . oottt et 143
Command Parameters and RESPONSESot v ittt it 144
Program MEeSSagesot 149
File Name Variables e e 150
MSUS (Mass Storage Unit Specifier) Variable 151
Quote Usage with SCPI Commands 152
Binary, Decimal, Hexadecimal, and Octal Formats 153
IEEE 488.2 Common Commandso v ittt et it 154
LS o 154
FESE 154
FESE . . 155
ESR . 155
DN . e 156
O C 156
FOP T 157
P S o 157
P S . 158
RO vttt 158
RS T o 158
S AV 159
FORE . 159
O RE . . 160
B I = 2 160
T RG e 160

Contents

Sl S 1127 161
N AL 161
Calibration subsystem (:CALibration) i, 162
DO M . L 162
Communication Subsystem (:SYSTem:COMMunicate). 163
IGPIB:ADDRESS . . .t 163
LAN:HOSTNAME . . . o 163
AN, L 164
PMETer: ADDRESSo 164
PPMETer:CHANRNEl 165
PMETer IDN . 165
IPMETerTIMEOUL o e 166
SSERIALBAUD. 166
SSERIALECHO. . . . 167
'SERIal:IRECeive:PACE 167
SSERIALRESEt. . . . 168
SSERIALTOUT . .. 168
SERIaLTRANSMITIPACE. e 169
Diagnostic Subsystem (:DIAGNOSTIC)ottt e 170
[CPULLIINFOrmation:BOARMS.t e 170
[:CPUL:INFOrmation:CCOunt:ATTenuator 170
[CPUL:IINFOrmation:CCOUNt:PON e 171
[:CPUL:INFOrmation:DISPlay:OTIMe e 171
[[CPULINFOrmation:OPTIONS.ttt e e 171
[:CPUL:INFOrmation:OPTions:DETail 172
[CPULINFOrmation:OTIMeo e 172
[:CPULINFOrmation:REVISION e 172
[CPULINFOIrmMation:SDATE . . .t e 173
Display Subsystem ((DISPlay) e e i 174
BBRIGNTNESS . . . 174
CAPTUNE . . 174
ICONTFASE. . .t 175
NV EISe. . 175
REMOtE. . . 176
EWINDOW] ST ATE] - et e e e e e e e e 176
Memory Subsystem (MEMOIY). e 177

Vi

Contents

ICATalog:BINGArY. . .. 177
CATalOg: LIS T . . o 178
CATAlOg: ST AT . ot 178
CATalOg:UR LT . .o 179
ICATAlOg ALL] . . o 179
ICOPY INAME] . . o 180
D AT A 180
DELete: AL e 181
IDELete:BINGArY 181
DELete: L lST .. 182
DELEte ST AT . . oot 182
DELeterUR LT . . 182
IDELete[:NAME]. . . .o 183
FREELALL] . .o 183
LOAD LIST 183
MOVE . . . e 184
STATE:COMMENT. e e e e e e 184
STOREILIST . . 184
Mass Memory Subsystem (MMEMOrY) 185
CATAlOg . .o 185
COPY L 186
DA T A e 186
IDELete[:NAME]. . . .o 187
LOAD LIST 187
MOVE . . . e 188
STORE LIST . 188
Output Subsystem(:OUTPUL) e 189
IMODUIAtION[:STATE] . .t 189
ST AT . . o 189
Status SUbSYStem ((STATUS). . . . oo i e e 190
(OPERation:CONDItIONo 190
(OPERation:ENABIE.o 190
:OPERation:NTRansition. 191
:OPERation:PTRaNSItION e 191
(OPERaAtiON[:EVENT]o e 192
PRESEL. . . 192
:QUEStionable:CALibration:CONDItioN. 193
:QUEStionable:CALibration:ENABIe 193

Vii

Contents

:QUEStionable:CALibration:NTRansition 194
:QUEStionable:CALibration:PTRansition. 194
:QUEStionable:CALibration[:EVENTt]. 195
:QUESTtionable:CONDItION. e 195
'QUESTtionable:ENABIe 196
:QUEStionable:FREQuency:CONDItioNot e 196
:QUEStionable:FREQuency:ENABIe. 197
:QUEStionable:FREQuency:NTRansition. 197
:QUEStionable:FREQuency:PTRansition. 198
:QUEStionable:FREQuency[:EVENL] 199
:QUEStionable:MODulation:CONDItioN. i e 199
:QUEStionable:MODulation:ENABIe 200
:QUEStionable:MODulation:NTRansition o..... 200
:QUEStionable:MODulation:PTRansition. 201
:QUEStionable:MODulation[:EVENTt]. 202
:QUESTtionable:NTRanNSItion e 203
:QUESTtionable:POWer:CONDItIioNo e e 203
:QUEStionable:POWer:ENABIe. 204
:QUEStionable:POWer:NTRansition. i 204
:QUEStionable:POWer:PTRansition i 205
‘QUESTtionable:POWer[:EVENT] 206
:QUESTtionable:PTRansItion e 207
:QUEStionable[:EVENL]. 207
System Subsystem ((:SYSTemM). 208
CCAPADIItY ... 208
ERROFNEXT] . o 208
THELP:MODE 209
PONITY PE . . o 210
PRESEL . . oo 210
PRESELALL . . .o 211
IPRESEUPERSIStENT.o 211
PRESELTYPE . .o 212
PRESEt[:USER]:SAVE. 212
SSAVEI DELAYo 213
ISSAVEINMODE 213
S S AVl ST AT . 214

viii

Contents

IVERSION . . 214
Trigger SUDSYSTEMo 215
AB O R . 215
(INITiate:CONTINUOUS[:ALLY] . ..o e 215
dNITiate[:IMMediate][:ALL]o 216
"TRIGQer:OQUTPULIPOLANItYt e e 216
"TRIGQer[:SEQUENCE]:SLOPE.t e 217
" TRIGQer[:SEQUENCe]:SOURCEt e 217
‘TRIGger[:SEQuence][:IMMediate] 218
Unit Subsystem CUNIT) ... e 219
PO BN 219
Amplitude Modulation Subsystem ([:SOURce])., 220
AMI AL 2. o 220
:AM:INTernal:FREQuency:STEP[:INCRement]. 221
AMIMODE . . . 222
AM[1] | 2:EXTernal[1]|2:COUPHINGo 223
AM[1]]| 2:EXTernal[1]|2:IMPedance. 223
‘AM[1]]2:INTernal[1]:FREQuency:ALTernate. 224
:AM[1]] 2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent 224
AMI1]]2: INTernal[1]:SWEep:RATE.o e 225
'AM[1]]2:INTernal[1]:SWEep: TRIGQErt 225
AMIL]]2:INTernal[1] J2:FREQUENCY . . o oo vt i e e e e e 226
:AM[1]]2:INTernal[1] | 2:FUNCtion:NOISe i 226
‘AM[1]]2:INTernal[1]]2:FUNCtion:RAMP. 227
:AM[1]]2:INTernal[1] | 2:FUNCtion:SHAPe e 227
AMIL]2:SOURCE. .« o oot 228
AMI L 2 ST AT e 228
AMIL 2 TY PE. 229
AM[1]|2[:DEPThL:EXPonential i, 229
'AMIL]2[:DEPTH][LINEAr] e 230
AAM[1] | 2[:DEPTH][:LINearl:TRACK.o e e 231
AAM[:DEPTh]:STEP[:INCRement]. e e e 232
Correction Subsystem ([:SOURce]:CORRection) 233
L AT NESS? . o 233
IFLATRNESSILOAD . ..o 233
IFLATNESSIPAIR . o 234
IFLATNESS POINTS? . .o 234
IFLATNESSIPRESEto 235

Contents

IFLATNESS: STORE . . 235
ST AT .ot 236
Frequency Subsystem ([:SOURCE])o oot e e 237
FREQuUENCY:FIXed. . ..o 237
'FREQUENCY:MODE 237
'FREQuency:MULTIplier 238
(IFREQuUeENCY:OFFSet 238
IFREQUENCY:OFFSEt:STATE . ..t e 239
(IFREQuUeNCY:REFerence 239
'FREQuUeNncy:REFerence:STATE e 239
IFREQUENCY: STARTL . ..o 240
IFREQUENCY:STOP .. 240
IFREQUENCY:CW] .o 241
IPHASEIRERErENCe oo 241
IPHASE[:ADJUST] . .. 242
IROSCIllator:SOURCE.o 242
'ROSCillator:SOURCE:AUTO ..o e 243
Frequency Modulation Subsystem ([:SOURce]).t 244
EM L] 2. 244
:FM:INTernal:FREQuency:STEP[:INCRement]. 245
'FM[1]12:EXTernal[1]J]2:COUPLINGo e 245
‘FM[1]]2:EXTernal[1]|2:IMPedance.ot 246
:FM[1]]2:INTernal[1]:FREQuency:ALTernate, 246
:FM[1]]2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent 247
FM[1]]2:INTernal[1]:SWEep:RATE.o e 247
'FM[1]]2:INTernal[1]:SWEep:TRIGQErt 248
'FM[1]]12:INTernal[1]|2:FREQUENCY . . . oot e e e 249
:FM[1]]12:INTernal[1]|2:FUNCtion:NOISe 249
:FM[1]]12:INTernal[1]|2:FUNCtion:RAMP. e 250
:FM[1]]2:INTernal[1]|2:FUNCtion:SHAPe 250
FEMIA]L2:SOURCE. . .t e 251
EMI Al 2 ST AT o 251
IEMIA]2[:DEVIation]o 252
FM[A]I12[:DEViation]: TRACK e e 253
List/Sweep subsystem (:SOURCE]).o oo e e 254
ILISTIDIRECHION . . .ot 254

Contents

ILIST:DWELL . . oo 255
LIST:DWELLPOINTS.o e e e e e e 255
ILIST:DWELLTYPE . . .o 256
ILIST:FREQUENCY . . o ottt e 256
LIST:FREQuUeNCY:POINTS e 257
ILISTIMANUAL. .« . 257
ILISTIMODE 258
LIS T PO . . . 258
ILIST:POWer:POINTS . . . o 259
ILIST:TRIGQErSOURCE e e 259
L ST T Y PE . . 260
LIST:-TYPELIST:INITialize:FSTepo oo e 260
LIST:-TYPE.LIST:INITialize:PRESet e e 261
SSWEEP:DWELL . .. 262
SWEEP: POINTS . . 262
Low Frequency Output Subsystem ([:SOURce]:LFOutput) 263
AMPLItUE. . .. 263
:FUNCtion[1]:FREQuency:ALTernate 263
:FUNCtion[1]:FREQuency:ALTernate:AMPLitude:PERCent 264
IFUNCHION[1]:SWEEP:RATE o e 264
FUNCtion[1]:SWEep: TRIGQEN o oo e 265
(FUNCHION[1] | 2:FREQUENCY . . . o ot e e e e e e 266
IFUNCtIioN[1] | 2:SHAPE . . oo 266
IFUNCHIONINOISE. . .. e 267
:FUNCtion[1]|2:SHAPe:RAMP e 267
SOURCE . 268
ST AT . o o 268
Phase Modulation subsystem ([:SOURCe]).ottt 269
Pl 2. e e 269
:PM:INTernal:FREQuency:STEP[:INCRement]. 270
PM[1]]2:BANDwidth|BWIDth i 270
PM[1]12:EXTernal[1]J2:COUPIINGo e e 271
‘PM[1]]2:EXTernal[1]]2:IMPedance.t 271
:PM[1]]2:INTernal[1]:FREQuency:ALTernate, 272
:PM[1]]2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent 272
‘PM[1]]2:INTernal[1]:SWEep:RATE. e 273
PM[1]]12:INTernal[1]:SWEep:TRIGQErt 273
PM[1]]12:INTernal[1] | 2:FREQUENCY oo e e e e 274

Xi

Contents

:PM[1]]2:INTernal[1]]2:FUNCtion:NOISe i 274
:PM[1]]2:INTernal[1]] 2:FUNCtion:RAMP. e 275
:PM[1]]2:INTernal[1]] 2:FUNCtion:SHAPe i 275
PMIL] L 2:SOURCE . . .ttt 276
PMI L] 2 ST AT o 276
PMIL]I2[DEVIation] . . . oo 277
PM[L]12[:DEVIation]:TRACK . . . oot e e e e 278
:PM[:DEViation]:STEP[:INCRement] e 278
Power Subsystem (:SOURCE])o ot e e 279
:POWer:ALC:BANDwidth|BWIDth i, 279
:POWer:ALC:BANDwidth | BWIDth:AUTO. e 279
IPOWer:ALCILEVEL. . . .o 280
POWer:ALC:SEARCh 280
POWer ALC:SOURCE. e e e 281
:POWer:ALC:SOURce:EXTernal:COUPIlIiNg 281
POWeEr AL ST AT . o ot 282
POWeEr AT TENUAtIoNo e e 282
POWer:ATTenuation:AUTO e 283
POWEIMODE 283
POWer REFerence 284
POWer:REFerence:STATe. . ..o 284
POWer ST AR ... 285
POWeEI ST OP . .. 285
:POWer[:LEVel][:IMMediate]:OFFSet. 286
:POWer[:LEVel][:IMMediate]AMPLitude] 287
Pulse Modulation Subsystem (:SOURce])ot 288
'PULM:INTernal[1]:DELAY oot e 288
PULM:INTernal[1]:DELay:STEPo e e 289
PULM:INTernal[1:FREQUENCY v ittt e 289
'PULM:INTernal[1]:PERIod. 290
:PULM:INTernal[1]:PERiod:STEP[:INCRement]. 290
PULM:INTernal[1]:PWIDth e e 291
'PULM:INTernal[1]:PWIDth:STEP. e 291
IPULMISOURCE . ..o e 292
'PULM:SOURCce:INTernal e 292
PULM ST AT . . oot e 293

Xii

Contents

SCPI Command Compatibility 294
SY STemIIDN .. 294
8340B/41B Compatible Commands (firmware > C.01.21) 295
836xxB/L Compatible SCPI Commands 309
8373xB and 8371xB Compatible SCPI Commands 327

Xiii

Contents

Xiv

1 Getting Started

Getting Started
Introduction to Remote Operation

Introduction to Remote Operation

PSG family signal generators support the following interfaces:

= General Purpose Interface Bus (GPIB)
« Local Area Network (LAN)
= ANSI/EIA232 (RS-232) serial connection

Each of these interfaces, in combination with an 10 library and programming language, can
be used to remotely control the signal generator. Figure 1-1 uses the GPIB as an example of
the relationships between the interface, 10 libraries, programming language, and signal
generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView etc.

VISA
. National Instruments
Agilent VISA VISA
) National Instruments
Agilent SICL NI-488.2 Library
Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

ce910a

2 Chapter 1

Interfaces

GPIB

LAN

RS-232

10 Libraries

Getting Started
Introduction to Remote Operation

GPIB is used extensively when a dedicated computer is available for remote
control of each instrument or system. Data transfer is fast because the GPIB
handles information in 8-bit bytes. GPIB is physically restricted by the
location and distance between the instrument/system and the computer;
cables are limited to an average length of two meters per device with a total
length of 20 meters.

LAN based communication is supported by the signal generator. Data
transfer is fast as the LAN handles packets of data. The distance between a
computer and the signal generator is limited to 100 meters (10BASE-T). The
following protocols can be used to communicate with the signal generator
over the LAN:

< VMEbus Extensions for Instrumentation (VXI) as defined in VXI-11
= Sockets LAN

e Telephone Network (TELNET)

< File Transfer Protocol (FTP)

RS-232 is a common method used to communicate with a single instrument;
its primary use is to control printers and external disk drives, and connect to
a modem. Communication over RS-232 is much slower than with GPIB or
LAN because data is sent and received one bit at a time. It also requires that
certain parameters, such as baud rate, be matched on both the computer
and signal generator.

An 10 library is a collection of functions used by a programming language to send instrument
commands. An 10 library must be installed on your computer before writing any programs to
control the signal generator.

NOTE

Agilent 10 libraries support the VXI-11 standard.

Chapter 1

Getting Started
Introduction to Remote Operation

Programming Language

The programming language is used along with Standard Commands for Programming
Instructions (SCPI) and 10 library functions to remotely control the signal generator.
Common programming languages include:

C/C++
Agilent BASIC
LabView

Javal]

Java is a U.S. trademark of Sun Microsystems, Inc.

Chapter 1

Getting Started
Using GPIB

Using GPIB

The GPIB allows instruments to be connected together and controlled by a computer. The
GPIB and its associated interface operations are defined in the ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992. See the IEEE website, www.ieee.org, for
details on these standards.

1. Installing the GPIB Interface Card

A GPIB interface card must be installed in your computer. Two common GPIB interface cards
are the National Instruments (NI) PCI-GPIB and the Agilent GPIB interface cards. Follow
the GPIB interface card instructions for installing and configuring the card in your computer.

The following tables provide information on interface cards.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems
Interface Operating 10 Languages Backplane | Max IO Buffering
Card System Library /BUS (kB/sec)
Agilent Windows VISA/ C/C++, Visual | ISA/EISA, 750 Built-in
82341C for 95/98/NT/ SICL Basic, Agilent | 16 bit
ISA bus 2000® VEE, Agilent
computers Basic for
Windows
Agilent Windows VISA/ C/C++, Visual | ISA/EISA, 750 Built-in
82341D 95 SICL Basic, Agilent | 16 bit
Plug&Play VEE, Agilent
for PC Basic for
Windows
Agilent Windows VISA/ C/C++, Visual | PCI 32 bit 750 Built-in
82350A for 95/98/NT/ SICL Basic, Agilent
PCI bus 2000 VEE, Agilent
computers Basic for
Windows

Windows 95, 98, NT and 2000 are registered trademarks of Microsoft Corporation

Chapter 1

Getting Started

Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems
Interface Operating 10 Languages Backplane | Max 1O
Card System Library /BUS

National Windows VISA C/C++, PCI 32 bit 1.5
Instrument’s | 95/98/2000/ | N-488.20] Visual BASIC, Mbytes/s
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 15
Instrument's | NT NI-488.2 Visual BASIC, Mbytes/s
PCI-GPIB+ LabView

N1-488.2 is a trademark of National Instruments Corporation

Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations
Interface Operating 10 Languages Backplane | Max 10 | Buffering
Card System Library /BUS (kB/sec)
Agilent HP-UX9.x, | VISA/SICL | ANSIC, EISA 750 Built-in
E2071C HP-UX Agilent VEE,
10.01 Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL | ANSI C, EISA 750 Built-in
E2071D 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL | ANSIC, PCI 750 Built-in
E2078A 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
6 Chapter 1

Getting Started
Using GPIB

2. Selecting 10 Libraries for GPIB

The 10 libraries are included with your GPIB interface card. These libraries can also be
downloaded from the National Instruments website or the Agilent website. The following is a
discussion on these libraries.

VISA VISA is an 10 library used to develop 10 applications and instrument
drivers that comply with industry standards. It is recommended that the
VISA library be used for programming the signal generator. The NI-VISAO
and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower
level 10 libraries; N1-488.2 and SICL respectively. It is best to use the
Agilent VISA library with the Agilent GPIB interface card or NI-VISA with
the NI PCI-GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can
be called from a program. However, if this method is used, executable
programs will not be portable to other hardware platforms. For example, a
program using SICL functions will not run on a computer with NI libraries
(PCI-GPIB interface card).

N1-488.2 N1-488.2 can be used without the VISA overlay. The N1-488.2 functions can
be called from a program. However, if this method is used, executable
programs will not be portable to other hardware platforms. For example, a
program using N1-488.2 functions will not run on a computer with Agilent
SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. Press Utility > GPIB/RS-232 > GPIB Address.

2. Use the numeric keypad, the arrow keys, or rotate the front panel knob to set the desired
address.

The signal generator’s GPIB address is set to 19 at the factory. The acceptable range of
addresses is 0 through 30. Once initialized, the state of the GPIB address is not affected by
a signal generator preset or by a power cycle. Other instruments on the GPIB cannot use
the same address as the signal generator.

3. Press Enter.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to
Table 1-4 for cable part numbers.)

NI-VISA is a registered trademark of National Instruments Corporation

Chapter 1 7

Getting Started

Using GPIB

Table 1-4 Agilent GPIB Cables
Model 10833A 10833B 10833C 10833D 10833F 10833G
Length | 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

4. Verifying GPIB Functionality

Use the VISA Assistant, available with the Agilent 10 Library or the Getting Started Wizard
available with the National Instrument 10 Library, to verify GPIB functionality. These utility
programs allow you to communicate with the signal generator and verify its operation over

the GPIB. Refer to the Help menu available in each utility for information and instructions on
running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example

programs in Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.

3. Verify that the GPIB card’'s name or id number matches the GPIB name or id number
configured for your PC.

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener

talker

controller

A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners

simultaneously.

A talker is a device capable of transmitting data. To avoid confusion, a GPIB

system allows only one device at a time to be an active talker.

A controller, typically a computer, can specify the talker and listeners
(including itself) for an information transfer. Only one device at a time can
be an active controller.

Chapter 1

Getting Started
Using GPIB

GPIB Function Statements

Function statements are the basis for GPIB programming and instrument control. These
function statements combined with SCPI provide management and data communication for the
GPIB interface and the signal generator.

This section describes functions used by different 10 libraries. Refer to the N1-488.2 Function
Reference Manual for Windows, Agilent Standard Instrument Control Library reference
manual, and Microsoft® Visual C++ 6.0 documentation for more information.

Abort Function

The Agilent BASIC function ABCRT and the other listed 10 library functions terminate
listener/talker activity on the GPIB and prepare the signal generator to receive a new command
from the computer. Typically, this is an initialization command used to place the GPIB in a
known starting condition.

Table 1-5
Agilent BASIC VISA N1-488.2 Agilent SICL
10 ABORT 7 vi Ter m nat e (parameter i bstop(int ud) | iabort (id)
list)

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate
normal execution of an asynchronous operation. The parameter list describes
the session and job id.

N1-488.2

Library The NI1-488.2 library function aborts any asynchronous read, write, or
command operation that is in progress. The parameter ud is the interface or
device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the
session i d. This function is supported with C/C++ on Windows 3.1 and Series
700 HP-UX.

Microsoft is a registered trademark of Microsoft Corporation.

Chapter 1 9

Getting Started
Using GPIB

Remote Function

The Agilent BASIC function REMOTE and the other listed 10 library functions cause the signal
generator to change from local operation to remote operation. In remote operation, the front
panel keys are disabled except for the Local key and the line power switch. Pressing the Local
key on the signal generator front panel restores manual operation.

Table 1-6
Agilent BASIC VISA N1-488.2 Agilent SICL
10 REMOTE 719 N/A Enabl eRenot e (parameter | irenot e (id)
list)

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with
the exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

N1-488.2

Library This NI-488.2 library function asserts the Remote Enable (REN) GPIB line.
All devices listed in the parameter list are put into a listen-active state
although no indication is generated by the signal generator. The parameter
list describes the interface or device descriptor.

SICL The Agilent SICL function puts an instrument, identified by the i d

parameter, into remote mode and disables the front panel keys. Pressing the
Local key on the signal generator front panel restores manual operation.
The parameter id is the session identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKQUT and the other listed 10 library functions can be
used to disable the front panel keys including the Local key. With the Local key disabled, only
the controller (or a hard reset of the line power switch) can restore local control.

Table 1-7

Agilent BASIC VISA NI1-488.2 Agilent SICL
10 LOCAL LOCKQUT 719 | N/A Set RWLS (parameter igpibllo (id)
list)

Agilent BASIC The LOCAL LQOCKQUT function disables all front-panel signal generator keys.
Return to local control can occur only with a hard on/off, when the LOCAL
command is sent or if the Preset key is pressed.

10 Chapter 1

VISA Library

N1-488.2
Library

SICL

Local Function

The Agilent BASI

Getting Started
Using GPIB

The VISA library, at this time, does not have a similar command.

The NI-488.2 library function places the instrument described in the
parameter list in remote mode by asserting the Remote Enable (REN) GPIB
line. The lockout state is then set using the Local Lockout (LLO) GPIB
message. Local control can be restored only with the EnableLocal N1-488.2
routine or hard reset. The parameter list describes the interface or device
descriptor.

The Agilent SICL igpibllo function prevents user access to front panel keys
operation. The function puts an instrument, identified by the i d parameter,
into remote mode with local lockout. The parameter i d is the session
identifier and instrument address list.

C function LOCAL and the other listed functions cause the signal generator

to return to local control with a fully enabled front panel.

Table 1-8
Agilent BASIC VISA N1-488.2 Agilent SICL
10 LOCAL 719 N/A i bloc (int ud) iloc(id)
Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation,
allowing access to the signal generator’s front panel keys.
VISA Library The VISA library, at this time, does not have a similar command.
N1-488.2
Library The NI1-488.2 library function places the interface in local mode and allows
operation of the signal generator’s front panel keys. The ud parameter in the
parameter list is the interface or device descriptor.
SICL The Agilent SICL function puts the signal generator into Local operation;

enabling front panel key operation. The i d parameter identifies the session.

Chapter 1

11

Getting Started
Using GPIB

Clear Function

The Agilent BASIC function CLEAR and the other listed 10 library functions cause the signal
generator to assume a cleared condition.

Table 1-9
Agilent BASIC | VISA N1-488.2 Agilent SICL
10 CLEAR 719 vi O ear (Vi Sessi on i bclr(int ud) iclear (id)
Vi)

Agilent BASIC The CLEAR 719 function causes all pending output-parameter operations to
be halted, the parser (interpreter of programming codes) to reset and
prepare for a new programming code, stops any sweep in progress, and
continuous sweep to be turned off.

VISA Library The VISA library uses the viClear function. This function performs an IEEE
488.1 clear of the signal generator.

N1-488.2

Library The NI-488.2 library function sends the GPIB Selected Device Clear (SDC)
message to the device described by ud.

SICL The Agilent SICL function clears a device or interface. The function also

discards data in both the read and write formatted 10 buffers. The i d
parameter identifies the session.

Output Function

The Agilent BASIC 10 function QUTPUT and the other listed 10 library functions put the signal
generator into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Table 1-10

Agilent BASIC | VISA N1-488.2 Agilent SICL

10 QUTPUT 719 | vi Printf(paraneter i bwt(parameter |iprintf (paraneter
list) list) list)

Agilent BASIC The function QUTPUT 719 puts the signal generator into remote mode,
makes it a listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to
output data. This function formats according to the format string and sends
data to the device. The parameter list describes the session id and data to
send.

12 Chapter 1

N1-488.2
Library

SICL

Enter Function

The Agilent BASI
libraries use simi

Getting Started
Using GPIB

The NI-488.2 library function addresses the GPIB and writes data to the
signal generator. The parameter list includes the instrument address,
session id, and the data to send.

The Agilent SICL function converts data using the format string. The format
string specifies how the argument is converted before it is output. The
function sends the characters in the format string directly to the
instrument. The parameter list includes the instrument address, data buffer
to write, and so forth.

C function ENTER reads formatted data from the signal generator. Other 10
lar functions to read data from the signal generator.

Table 1-11
Agilent BASIC | VISA N1-488.2 Agilent SICL
10 ENTER 719; | viScanf (parameter ibrd (parameter list) | iscanf (parameter list)
list)

Agilent BASIC

VISA Library

NI1-488.2
Library

SICL

The function ENTER 719 puts the signal generator into remote mode, makes
it a talker, and assigns data or status information to a designated variable.

The VISA library uses the viScanf function and an associated parameter list
to receive data. This function receives data from the instrument, formats it
using the format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

The NI1-488.2 library function addresses the GPIB, reads data bytes from
the signal generator, and stores the data into a specified buffer. The
parameter list includes the instrument address and session id.

The Agilent SICL function reads formatted data, converts it, and stores the
results into the argument list. The conversion is done using conversion rules
for the format string. The parameter list includes the instrument address,
formatted data to read, and so forth.

Chapter 1

13

Getting Started
Using LAN

Using LAN

The signal generator can be remotely programmed via a LAN interface and LAN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be
connected together and controlled by a LAN-based computer. LAN and its associated interface
operations are defined in the IEEE 802.2 standard. See the IEEE website for more details.

The signal generator supports the following LAN interface protocols:
= VXI-11

* Sockets LAN

= Telephone Network (TELNET)

= File Transfer Protocol (FTP)

VXI-11 and sockets LAN are used for general programming using the LAN interface,
TELNET is used for interactive, one command at a time instrument control, and FTP is for
file transfer.

1. Selecting 10 Libraries for LAN

The TELNET and FTP protocols do not require 10 libraries to be installed on your computer.
However, to write programs to control your signal generator, an 1/O library must be installed
on your computer and the computer configured for instrument control using the LAN
interface.

The 10 libraries can be downloaded from the Agilent website. The following is a discussion on
these libraries.

Agilent VISA VISA is an 10 library used to develop 10 applications and instrument
drivers that comply with industry standards. Use the Agilent VISA library
for programming the signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent
VISA.

14 Chapter 1

Getting Started
Using LAN

2. Setting Up the LAN Interface

For LAN operation, an IP address must be assigned to the signal generator and the signal
generator connected to the LAN. Your IT administrator can issue a hostname and IP address
for the signal generator.

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

2. Press Hostname.
Use the alphanumeric softkeys to enter a hostname. The name is not case sensitive.

3. Press Enter.

4. Press IP Address.

Use the left and right arrow keys to move the cursor. Use the up and down arrow keys, the
front panel knob or the numeric keypad to enter an IP address. You can press the Clear Text
softkey to erase the current address.

5. Press Enter and then cycle the signal generator’s power, using the LINE switch.

This assigns a hostname and IP address to the signal generator. The hostname and IP
address are not affected by an instrument preset or by a power cycle.

6. Connect the signal generator to the LAN using a 10BASE-T LAN cable.

3. Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file
server using the ping utility. Compare your ping response to those described in Table 1-12.

From a UNIX ® workstation, type:
pi ng host nanme 64 10

where host nane is your instruments name and 64 is the packet size, and 10 is the number of
packets transmitted. Type man pi ng at the UNIX prompt for details on the ping command.

From the MS-DOS® Command Prompt or Windows environment, type:
ping -n 10 host name

where host nane is your instruments name and 10 is the number of echo requests. Type pi ng
at the command prompt for details on the ping command.

UNIX is a registered trademark of the Open Group
MS-DOS is a registered trademark of Microsoft Corporation

Chapter 1 15

Getting Started

Using LAN
Table 1-12 Ping Responses
Normal Response A normal response to the ping command will be a total of 9 or 10
for UNIX packets received with a minimal average round-trip time. The
minimal average will be different from network to network. LAN
traffic will cause the round-trip time to vary widely.
Normal Response A normal response to the ping command will be a total of 9 or 10

for DOS or Windows | packets received if 10 echo requests were specified.

Error Messages If error messages appear, then check the command syntax before
continuing with troubleshooting. If the syntax is correct, resolve the
error messages using your network documentation or by consulting
your network administrator.

If an unknown host error message appears, try using the IP address
instead of the hostname. Also, verify that the host name and IP
address for the signal generator have been registered by your IT
administrator.

Check that the hostname and IP address are correctly entered in
the node names database. To do this, enter t he nsl ookup
<host narme> command from the command prompt.

No Response If there is no response from a ping, no packets were received. Check
that the typed address or hostname matches the IP address or
hostname assigned to the signal generator in the System Utility >
GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the
signal generator, starting with your workstation. If a node doesn't
respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should
suspect a hardware problem.

Intermittent If you received 1 to 8 packets back, there maybe a problem with the
Response network. In networks with switches and bridges, the first few pings
may be lost until the these devices ‘learn’ the location of hosts. Also,
because the number of packets received depends on your network
traffic and integrity, the number might be different for your
network. Problems of this nature are best resolved by your IT
department.

16 Chapter 1

Getting Started
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard.
VXI-11 is an instrument control protocol based on Open Network Computing/Remote
Procedure Call (ONC/RPC) interfaces running over TCP/IP. It is intended to provide GBIB
capabilities such as SRQ (Service Request), status byte reading, and DCAS (Device Clear
State) over a LAN interface. This protocol is a good choice for migrating from GPIB to LAN as
it has full Agilent VISA/SICL support. See the VXI website, www.vsi.org, for more information
and details on the specification.

Configuring for VXI-11

The Agilent 10 library has a program, 10 Config, that is used to setup the computer/signal
generator interface for the VXI-11 protocol. Download the latest version of the Agilent 10
library from the Agilent website. Refer to the Agilent 10 library user manual, documentation,
and Help menu for information on running the 10 Config program and configuring the VXI-11
interface.

Use the 10 Config program to configure the LAN client. Once the computer is configured for a
LAN client, you can use the VXI-11 protocol and the VISA library to send SCPI commands to
the signal generator over the LAN interface. Example programs for this protocol are included
in “LAN Programming Examples” on page 64 of this programming guide.

NOTE For Agilent 10 library version J.01.0100, the “identify devices at run-time”
check box must be unchecked. Refer to Figure 1-2.

Chapter 1 17

Getting Started

Using LAN
Figure 1-2 Show Devices Form
Show Devices |
: k.
[ddentify devices at run-time
Cancel
Devices prezent on interface GPIET:
Add device
Bemove device
Auto Add devices
ce921a
18 Chapter 1

Getting Started
Using LAN

Using Sockets LAN

Sockets LAN is a method used to communicate with the signal generator over the LAN
interface using the Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is a
fundamental technology used for computer networking and allows applications to
communicate using standard mechanisms built into network hardware and operating
systems. The method accesses a port on the signal generator from which bidirectional
communication with a network computer can be established.

Sockets LAN can be described as an internet address that combines the Internet Protocol (IP)
with a device port number and represents a single connection between two pieces of software.
The socket can be accessed using code libraries packaged with the computer operating system.
Two common versions of socket libraries are the Berkeley Sockets Library for UNIX systems
and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The
signal generator is also compatible with other standard sockets APIs. The signal generator
can be controlled using SCPI commands that are output to a socket connection established in
your program.

Before you can use sockets LAN, you must select the signal generator’s sockets port number to
use:

« Standard mode. Available on port 7777. Use this port for simple programming.
e TELNET mode. Available on port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.

Chapter 1 19

Getting Started
Using LAN

Using TELNET LAN

TELNET provides a means of communicating with the signal generator over the LAN. The
TELNET client, run on a LAN connected computer, will create a login session on the signal
generator. A connection, established between computer and signal generator, generates a user
interface display screen with SCPI > prompts on the command line.

Using the TELNET protocol to send commands to the signal generator is similar
communicating with the signal generator over GPIB. You establish a connection with the
signal generator and then send or receive information using SCPI commands. Communication
is interactive: one command at a time.

Using TELNET and MS-DOS Command Prompt

1. On the PC click Start > Programs > Command Prompt.

2. At the command prompt, type int el net.

3. Press enter. The TELNET display screen will be displayed.

4. Click on the Connect menu then select Remote System. A connection form will be displayed.
Refer to Figure 1-3.

5. Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.
= Host Name - IP address or hostname
= Port-7778
e Term Type - vt100

6. At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4 on page 22.

7. To signal device clear, press Ctrl-C on your keyboard.

8. Select Exit from the Connect menu and type exi t at the command prompt to end the
TELNET session.

20 Chapter 1

Getting Started
Using LAN

Figure 1-3 Connect Form

Connect |

Host Name: |Instrument Name |«

Port: Frig i

TermType: Im v

Connect Cancel

ce923a

Using TELNET On a PC With a Host/Port Setting Menu GUI

1.

On your PC click Start > Run.

2. Typet el net then click the Ok button. The TELNET connection screen will be displayed.

Click on the Connect menu then select Remote System. A connection form will be displayed.
Refer to Figure 1-3.

Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.
= Host Name - signal generator’s IP address or hostname

= Port-7778

e Term Type - vt100

At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4.

To signal device clear, press Ctrl-C.

Select Exit from the Connect menu to end the TELNET session.

Chapter 1 21

Getting Started
Using LAN

Figure 1-4 TELNET Window
% Telnet - fpvipl ME E

Connect Edit Terminal Help

Agilent Technologies, E8254An SH-USOGO6808Y4
Firmware: Har 28 2001 11:23:18

Hostname: B861p1

IP : A0 800 .00 0B

SCPI> =IDNH?

Agilent Technologies, E8254A, USOO000664, C.01.00
SCPI> =RST

SCPI> POW:AMPL -18 dbm

SCPI> POW?

-1.0008A806E + 881

scri>]

ce918a

The Standard UNIX TELNET Command
Synopsis tel net [host [port]]

Description This command is used to communicate with another host using the TELNET
protocol. When the command t el net is invoked with host or port arguments, a connection is
opened to the host, and input is sent from the user to the host.

Options and Parameters The command t el net operates in character-at-a-time or
line-by-line mode. In line-by-line mode, typed text is echoed to the screen. When the line is
completed (by pressing the Enter key), the text line is sent to host . In character-at-a-time
mode, text is echoed to the screen and sent to host as it is typed. At the UNIX prompt, type
nman t el net to view the options and parameters available with the t el net command.

22 Chapter 1

Getting Started
Using LAN

NOTE If your TELNET connection is in line-by-line mode, there is no local echo. This
means you cannot see the characters you are typing until you press the Enter
key. To remedy this, change your TELNET connection to character-by-character
mode. Escape out of TELNET and, at the t el net > prompt, type node char. If
this does not work, consult your TELNET program’s documentation.

Unix TELNET Example

To connect to the instrument with host name nyl nst r unent and port number 7778, enter the
following command on the command line:

tel net nylnstrunent 7778

When you connect to the signal generator, the UNIX window will display a welcome message
and a SCPI command prompt. The instrument is now ready to accept your SCPI commands.
As you type SCPI commands, query results appear on the next line. When you are done, break
the TELNET connection using an escape character. For example, Ctrl -] ,where the control key
and the] are pressed at the same time.

The following example shows TELNET commands:
$ telnet nyinstrument 7778

Trying....

Connected to signal generator

Escape character is “*]".

Agilent Technologies, E8254A SN-US00000001

Firmware:

Hostname: your instrument

IP XXX XX XXX.XXX

SCPI>

Chapter 1 23

Getting Started
Using LAN

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected
to the LAN. For example, you can use FTP to download instrument screen images to a
computer. When logged onto the signal generator with the FTP command, the signal
generator’s file structure can be accessed. Figure 1-5 shows the FTP interface and lists the
directories in the signal generator’s user level directory.

NOTE File access is limited to the signal generator's / user directory.

Figure 1-5 FTP Screen

7% Command Prompt - ftp 000.000.00.000
<C> Copyrights 1985-1996 Microsoft Corp.

C:\>ftp 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-US00000004
220- Firmware: Mar.28.2001 11:23:18
220- Hostname: 000lp1

220- 1P : 000.000.00.000

220- FTP server <Version 1.0> ready.
User <000.000.00.000:<none> >:

331 Password required

Password:

230 Successful login

ftp> 1s

200 Port command successful.

150 Opening data connection.
BACKUP

BIN

CAL

HTML

SYS

USER

226 Transfer complete.

35 bytes received in 0.00 seconds <35000.00 Kbytes/sec>
ftp> _

ce917a

24 Chapter 1

Getting Started
Using LAN

The following steps outline a sample FTP session from the MS-DOS Command Prompt:
1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt enter:
ftp <I1P address > or < host nane >
3. At the user name prompt, press enter.
4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt
will show you the FTP commands that are available on your system.

5. Type quit or bye to end your FTP session.

Chapter 1 25

Getting Started
Using RS-232

Using RS-232

The RS-232 serial interface can be used to communicate with the signal generator. The
RS-232 connection is standard on most PCs and can be connected to the signal generator’s
rear-panel AUXILIARY INTERFACE connector using the cable described in Table 1-13 on
page 27. Many functions provided by GPIB, with the exception of indefinite blocks, serial
polling, GET, non-SCPI remote languages, and remote mode are available using the RS-232
interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is
slow. The data transmitted and received is usually in ASCII format with SCPI commands
being sent to the signal generator and ASCII data returned. The interface uses three-line
communication: Transmit, Receive, and Ground.

1. Selecting 10 Libraries for RS-232

The 10 libraries can be downloaded from the National Instrument website, www.ni.com, or
Agilent’s website, www.agilent.com. The following is a discussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive 10 library that can be used to
control the signal generator over the RS-232 interface. This library has
many low level functions that can be used in BASIC applications to control
the signal generator over the RS-232 interface.

VISA VISA is an 10 library used to develop 10 applications and instrument
drivers that comply with industry standards. It is recommended that the
VISA library be used for programming the signal generator. The NI-VISA
and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower
level 10 libraries used to communicate over the RS-232; NI1-488.2 and SICL
respectively.

N1-488.2 N1-488.2 10 libraries can be used to develop applications for the RS-232
interface. See National Instrument’s website for information on N1-488.2.

SICL Agilent SICL can be used to develop applications for the RS-232 interface.
See Agilent’s website for information on SICL.

26 Chapter 1

Getting Started
Using RS-232

. Setting Up the RS-232 Interface

. Press Utility > GPIB/RS-232 > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the
baud rate of your computer or UNIX workstation or adjust the baud rate settings on your
computer to match the baud rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with

the “VI_ATTR_ASRL_BAUD” VISA attribute.

. Press Utility > GPIB/RS-232 > RS-232 Setup > Trans/Recv Pace None Xon until None is
highlighted.

The signal generator does not support hardware handshake. Software flow control is
enabled with the Xon selection in the above key menu.

. Press Utility > GPIB/RS-232 > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to
the signal generator and prints them to the display.

. Connect an RS-232 cable from the computer’s serial connector to the signal generator’s
AXILLARY INTERFACE connector. Refer to Table 1-13 for RS-232 cable information.

Table 1-13 RS-232 Serial Interface Cable
Quantity | Description Agilent Part Number
1 Serial RS-232 cable 9-pin (male) to 8120-6188
9-pin (female)
NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires

pins 2,3, and 5 may be used.

Chapter 1

27

Getting Started
Using RS-232

3. Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232
interface functionality.

To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator, set the signal generator’s baud rate to 9600, and perform the following steps:

1. On the PC click Start >Programs > Accessories > HyperTerminal.

2. Select HyperTerminal.
3. Enter a name for the session in the text box and select an icon.
4. Select COM1 (COM2 can be used if COML1 is unavailable).
5. In the COM1(or COM2, if selected) properties, set the following parameters:
= Bits per second: 9600 must match computer’s baud rate
= Data bits: 8
e Parity: None
= Flow Control: None
NOTE With software flow control the user cannot transmit binary data (file 10).

6. Go to the HyperTerminal window and select File > Properties

7. Go to Settings > Emulation and select VT100.

8. Go to Settings > ASCII Setup.

9. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *1 DN? in the HyperTerminal
window.

The signal generator should return a string similar to the following, depending on model:

<instrument model name and number>, US37040098 B. 03. 00

28 Chapter 1

Getting Started
Using RS-232

If You Have Problems

1. Verify that the baud rate, parity, stop bits, and flow control are the same for the computer
and signal generator.

2. Verify that the RS-232 cable is identical to the cable specified in Table 1-13.

3. Verify that the application is using the correct computer COM port and that the RS-232
cable is properly connected to that port.

Character Format Parameters

The signal generator uses the following character format parameters when communicating
via RS-232:

= Character Length: Eight data bits are used for each character, excluding start, stop, and
parity bits.

= Parity Enable: Parity is disabled (absent) for each character.
= Stop Bits: One stop bit is included with each character.

= Software flow control or no Software flow control.

Chapter 1 29

Getting Started
Using RS-232

30 Chapter 1

2 Programming Examples

31

Programming Examples
Using the Programming Examples

Using the Programming Examples

The programming examples for remote control of the signal generator use the GPIB, LAN,
and RS-232 interfaces and demonstrate instrument control using different 1/O libraries and
programming languages. Many of the example programs in this chapter are interactive; the
user will be prompted to perform certain actions or verify signal generator operation or
functionality. Example programs are written in the following languages:

= Agilent BASIC
e C/C++

= Java

= PERL

See Chapter 1 of this programming guide for information on interfaces, 1/0 libraries, and
programming languages.

The example programs are also available on the PSG Family Documentation CD-ROM,
allowing you to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel
keys, except the Local key, are disabled. Press the Local key to revert to manual
operation.

NOTE To update the signal generator’s front panel display so that it reflects remote

command setups, enable the remote display: press Utility > Display > Update in
Remote Off On softkey until On is highlighted or send the SCPI command
: DI SPl ay: REMbt e ON. For faster test execution, disable front panel updates.

32 Chapter 2

Programming Examples
Using the Programming Examples

Programming Examples Development Environment

The C/C++ examples in this guide were written using an IBM-compatible personal computer
(PC) with the following configuration:

= Pentium® processor

= Windows NT 4.0 operating system

= C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

= National Instruments PCI- GPIB interface card or Agilent GPIB interface card
= National Instruments VISA Library or Agilent VISA library

e COML1 or COM2 serial port available

= LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation

Running C/C++ Programming Examples

To run the example programs written in C/C++ you must include the required files in the
Microsoft Visual C++ 6.0 project.

If you are using the VISA library do the following:

« add the visa32.lib file to the Resource Files
« add the visa.h file to the Header Files
If you are using the NI-488.2 library do the following:

= add the GPIB-32.0BJ file to the Resource Files
= add the windows.h file to the Header Files
« add the Deci-32.h file to the Header Files

Refer to the National Instrument website for information on the NI1-488.2 library and file
requirements. For information on the VISA library see the Agilent website or National
Instrument’s website.

Pentium is a U.S. registered trademark of Intel Corporation

Chapter 2 33

Programming Examples
GPIB Programming Examples

GPIB Programming Examples

= ‘“Interface Check using Agilent BASIC” on page 35

= ‘“Interface Check Using N1-488.2 and C++” on page 36

= ‘“Interface Check using VISA and C” on page 37

= “Local Lockout Using Agilent BASIC” on page 38

= “Local Lockout Using N1-488.2 and C++" on page 39

= “Queries Using Agilent BASIC” on page 41

= “Queries Using N1-488.2 and C++" on page 43

= “Queries Using VISA and C” on page 45

= “Generating a CW Signal Using VISA and C” on page 47

= “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 49
= “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 51
= “Generating a Step-Swept Signal Using VISA and C” on page 53

= “Saving and Recalling States Using VISA and C” on page 55

= “Reading the Data Questionable Status Register Using VISA and C” on page 57
= “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 60

Before Using the Examples

If the Agilent GPIB interface card is used, then the Agilent VISA library should be installed
along with Agilent SICL. If the National Instruments PCI-GPIB interface card is used, the
NI-VISA library along with the N1-488.2 library should be installed. Refer to “2. Selecting 10
Libraries for GPIB” on page 7 and the documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is
addressed at 7 and the signal generator at 19. The GPIB address designator for
other libraries is typically GPIBO or GPIB1.

34 Chapter 2

Programming Examples
GPIB Programming Examples

Interface Check using Agilent BASIC

This simple program causes the signal generator to perform an instrument reset. The SCPI
command *RST places the signal generator into a pre-defined state and the remote
annunciator (R) appears on the front panel display.

The following program example is available on the PSG Family Documentation CD-ROM as
basicex1.txt.

10 !**
20 !

30 I PROGRAM NAME: basi cex1. t xt

40 !

50 ! PROGRAM DESCRI PTION: This program verifies that the GPIB connections and
60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the foll ow ng commands and then
120 ! RUN the program

130 !

140 !~k~k~k~k~k~k~k~k**~k~k~k~k~k~k************************
150 !

160 Sig_gen=719
170 LOCAL Sig_gen
180 CLEAR Sig_gen
190 REMOTE 719
200 CLEAR SCREEN
210 REMOTE 719

Decl ares a variable to hold the signal generator’s address
Pl aces the signal generator into Local node

Clears any pending data |1/O and resets the parser

Puts the signal generator into renote node

Clears the controllers display

220 QUTPUT Sig_gen;"*RST" | Places the signal generator into a defined state
230 PRI NT "The signal generator should now be in REMOTE."
240 PRI NT

250 PRINT "Verify that the renpte [R] annunciator is on. Press the ‘Local’ key, "
260 PRINT "on the front panel to return the signal generator to local control."
270 PRI NT

280 PRINT "Press RUN to start again."

290 END ! Program ends

Chapter 2 35

Programming Examples
GPIB Programming Examples

Interface Check Using N1-488.2 and C++

This example uses the N1-488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following
code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
niex1.cpp.

VRS R RS EEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

/1

/| PROGRAM NAME: ni exl.cpp

/1

// PROGRAM DESCRI PTI ON: This programverifies that the GPIB connections and

I/ interface are functional.

/1

// Connect a GPIB cable fromthe PC GPIB card to the signal generator

/1 Enter the followi ng code into the source .cpp file and execute the program
1

// khkhkhkhkhkhhkhhhkhkhkhkhkhkhkhkdkhk kA Ak kkk k%%

#i nclude "stdafx. h"

#i ncl ude <i ostreanr
#i ncl ude "wi ndows. h"
#i ncl ude "Decl -32. h"
usi ng namespace std;

int GPl BO= 0; /1 Board handl e
Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
int sig; /'l Declares a device descriptor variable
sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); /'l Sends device clear nessage to signal generator
ibwt(sig, "*RST", 4); /'l Places the signal generator into a defined state

/1 Print data to the output w ndow
cout << "The signal generator should now be in REMOTE. The renote indicator"<<endl;
cout <<"annunci ator R should appear on the signal generator display"<<endl;
return O;
}

36 Chapter 2

Programming Examples
GPIB Programming Examples

Interface Check using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as

visaexl1.cpp.

AR EEEEE SRR EEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEE]

/1 PROGRAM NAME: vi saex1. cpp

11

// PROCGRAM DESCRI PTI ON: Thi s exanpl e program verifies that the GPI B connections and
// and interface are functional.

/1 Turn signal

11

generator power off then on and then run the progam

//**********~k~k**

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#include <stdlib. h>

void main ()

{

Vi Sessi on defaul tRM i ; /] Declares a variable of type Vi Session
/1 for instrunent conmunication
Vi Status vi Status = O;
/1l Opens a session to the GPIB device
/] at address 19
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "GPl B::19:: I NSTR', VI_NULL, WVI_NULL, &vi);
i f(viStatus)({
printf("Could not open Vi Session!\n");
printf("Check instrunents and connections\n");
printf("\n");
exit(0);}

ViPrintf(vi, "*RST\n"); /1 initializes signal generator
/1 prints to the output w ndow
printf("The signal generator should now be in REMOTE. The renpte
indicator\n");
printf("annunciator R shoul d appear on the signal generator display\n");
printf("\n");

vi C ose(vi); /'l cl oses session
vi Cl ose(defaul tRVM ; /1 closes default session

Chapter 2

37

Programming Examples
GPIB Programming Examples

Local Lockout Using Agilent BASIC

This example demonstrates the Local Lockout function. Local Lockout disables the front
panel signal generator keys.

The following program example is available on the PSG Family Documentation CD-ROM as

basicex?2.txt.

10 !***
20 !

30 ! PROGRAM NAME: basi cex2. t xt

40 !

50 ! PROGRAM DESCRI PTION: I n REMOTE npbde, access to the signal generators

60 ! functional front panel keys are disabl ed except for
70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command will disable the Local key

90 ! The LOCAL command, executed fromthe controller, is then
100 ! the only way to return the signal generator to front panel
110 ! Local , control

120 !***
130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Si g_gen | Resets signal generator parser and clears any out put

150 LOCAL Sig_gen ! Places the signal generator in |ocal node

160 REMOTE Si g_gen I Places the signal generator in renote node

170 CLEAR SCREEN I Clears the controllers display

180 QUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state
190 ! The following print statenments are user pronpts

200 PRI NT "The signal generator should now be in rempte. "

210 PRINT "Verify that the "R and 'L’ annunciators are visable"

220 PRINT ".......... Press Conti nue"

230 PAUSE

240 LOCAL LOCKOUT 7 I Puts the signal generator in LOCAL LOCKOUT node

250 PRI NT ! Prints user pronpt nessages

260 PRI NT "Si gnal generator should now be in LOCAL LOCKOUT node. "

270 PRI NT

280 PRINT "Verify that all keys including ‘Local’ (except Contrast keys) have no
effect.”

290 PRI NT

300 PRINT ".......... Press Conti nue"

310 PAUSE

320 PRI NT

330 LOCAL 7 I Returns signal generator to Local contro

340 ! The following print statenents are user pronpts

350 PRI NT "Si gnal generator should now be in Local node."

360 PRI NT

370 PRINT "Verify that the signal generator’s front-panel keyboard is functional."
380 PRI NT

390 PRINT "To re-start this program press RUN. "

400 END

38 Chapter 2

Programming Examples
GPIB Programming Examples

Local Lockout Using N1-488.2 and C++

This example uses the N1-488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the PSG Family Documentation CD-ROM as
niex2.cpp.

ISR R R R EEEREE

/1 PROGRAM NAME: ni ex2.cpp

/1

/| PROGRAM DESCRI PTI ON: This programwi || place the signal generator into

// LOCAL LOCKQUT npbde. All front panel keys, except the Contrast key, will be disabl ed.
/1 The local command, ’'ibloc(sig)’ executed via programcode, is the only way to

/1 return the signal generator to front panel, Local, control.
// khkhkhkhkhkhhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkk k%

#i nclude "stdafx.h"

#i ncl ude <i ostreant
#i ncl ude "wi ndows. h"
#i ncl ude "Decl-32.h"
usi ng namespace std;

int GPlIBO= 0; /1 Board handl e

Addr4882_t Address[31]; /'l Declares a variable of type Addr4882_t

int main()

{
int sig; /1l Declares variable to hold interface descriptor
sig = ibdev(0, 19, 0, 13, 1, 0); /1 Opens and initialize a device descriptor
ibclr(sig); /1 Sends GPIB Selected Device Clear (SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state

cout << "The signal generator should now be in REMOTE. The renote node R "<<endl;
cout <<"annunci ator shoul d appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,’\n");

Sendl FC(GPI BO) ; /!l Resets the GPIB interface

Addr ess[0] =19; /'l Signal generator’s address

Addr ess[1] =NOADDR; /1l Signifies end element in array. Defined in
/1 DECL-32.H

Set R\LS(GPI BO, Address); /1l Places device in Renpte with Lockout State.

cout << "The signal generator should now be in LOCAL LOCKQUT. Verify that all
keys" <<endl ;

cout<< "including the 'Local’ key are disabled (Contrast keys are not
af f ect ed) " <<endl ;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n");

i bl oc(sig); /1 Returns signal generator to |local control

Chapter 2 39

Programming Examples
GPIB Programming Examples

cout <<endl ;
cout <<"The signal generator should now be in |ocal nbde\n";
return 0;}

}

40 Chapter 2

Programming Examples
GPIB Programming Examples

Queries Using Agilent BASIC

This example demonstrates signal generator query commands. The signal generator can be
gueried for conditions and setup parameters. Query commands are identified by the question
mark as in the identify command *| DN?

The following program example is available on the PSG Family Documentation CD-ROM as
basicex3.txt.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

R R R R R R R R R R R R

PROGRAM NAME: basi cex3. t xt

PROGRAM DESCRI PTION: I n this exanple, query conmands are used with response
data formats.

!
!
!
!
!
!
! CLEAR and RESET the controller and RUN the follow ng program
!

!**
1

DI M A$[10], C$[100] , D$[10] ! Declares variables to hold string response data

| NTEGER B ! Declares variable to hold integer response data

Si g_gen=719 | Declares variable to hold signal generator address
LOCAL Sig_gen I Puts signal generator in Local node

CLEAR Sig_gen | Resets parser and clears any pending out put

CLEAR SCREEN ! Clears the controller’s display

OUTPUT Sig_gen;"*RST" ! Puts signal generator into a defined state
OUTPUT Sig_gen;"FREQ:CW?" ! Querys the signal generator CW frequency setting
ENTER Sig_gen;F ! Enter the CW frequency setting

! Print frequency setting to the controller display
PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

PRINT
OUTPUT Sig_gen;"POW:AMPL?" ! Querys the signal generator power level
ENTER Sig_gen;W ! Enter the power level

! Print power level to the controller display
PRINT "Current power setting is: ";W;"dBM"

PRINT
OUTPUT Sig_gen;"FREQ:MODE?" | Querys the signal generator for frequency mode
ENTER Sig_gen;A$! Enter in the mode: CW, Fixed or List

! Print frequency mode to the controller display
PRINT "Source's frequency mode is: ";A$
PRINT
OUTPUT Sig_gen;"OUTP OFF" ! Turns signal generator RF state off
OUTPUT Sig_gen;"OUTP?" ! Querys the operating state of the signal generator
ENTER Sig_gen;B ! Enter in the state (O for off)
! Print the on/off state of the signal generator to the controller display
IF B>0 THEN

PRINT "Signal Generator output is: on"
ELSE

PRINT "Signal Generator output is: off"

Chapter 2 41

Programming Examples
GPIB Programming Examples

420 END | F

430 QUTPUT Si g_gen; "* | DN?" I Querys for signal generator |ID

440 ENTER Si g_gen; C$! Enter in the signal generator |ID

450 ! Print the signal generator ID to the controller display

460 PRI NT

470 PRI NT "This signal generator is a ";C$

480 PRI NT

490 ! The next conmand is a query for the signal generator’s GPIB address
500 QUTPUT Si g_gen; " SYST: COW GPI B: ADDR?"

510 ENTER Si g_gen; D$! Enter in the signal generator’s address
520 I Print the signal generator’s GPIB address to the controllers display
530 PRINT "The GPIB address is ";D$

540 PRI NT

550 ! Print user pronpts to the controller’s display

560 PRI NT "The signal generator is now under |ocal control"

570 PRINT "or Press RUNto start again."

580 END

42 Chapter 2

Programming Examples
GPIB Programming Examples

Queries Using NI1-488.2 and C++

This example uses the N1-488.2 library to query different instrument states and conditions.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
niex3.cpp.

IR SRR R R R EEEREEEEEEEEEEREE

/1 PROGRAM NAME: ni ex3. cpp

/1

// PROGRAM DESCRI PTI ON: This exanpl e denponstrates the use of query commands.
/1

/1 The signal generator can be queried for conditions and instrument states.
/'l These commands are of the type "*IDN?" where the question mark indicates
/1 a query.

/1

TR R R R R R EEREEEEEEEEEEEEEEE]

#i ncl ude "stdafx. h"

#i ncl ude <i ostreanp
#i ncl ude "w ndows. h"
#i ncl ude "Decl-32.h"
usi ng nanespace std;

int GPlIBO= 0; /1 Board handl e
Addr4882_t Address[31]; /'l Declare a variable of type Addr4882_t
int main()
{
int sig; /1 Declares variable to hold interface descriptor
int num
char rdval [100]; /1l Declares variable to read instrunent responses
sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor
i bloc(sig); /1l Places the signal generator in |ocal node
ibclr(sig); /'l Sends Sel ected Device C ear(SDC) nessage
ibwt(sig, "*RST', 4); /'l Places signal generator in a defined state
ibwt(sig, ":FREQuency:CW",6 14); // Querys the CWfrequency
i brd(sig, rdval, 100); /1l Reads in the response into rdVval
rdval [ibcntl] = '\0"; /1 Null character indicating end of array
cout <<"Source CWfrequency is "<<rdVal; /1 Print frequency of signal generator

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

i bwrt(sig, "POWAMPL?",10); /'l Querys the signal generator
i brd(sig, rdval, 100); /'l Reads the signal generator power |evel
rdval [ibcntl] = '\0"; /1 Null character indicating end of array

/1 Prints signal generator power |evel
cout <<"Source power (dBm is : "<<rdVal;
cout <<"Press any key to continue"<<endl;

Chapter 2 43

Programming Examples
GPIB Programming Examples

cin.ignore(10000,'\n");

i bwrt(sig, ":FREQ MODE?", 11); /1 Querys source frequency node
i brd(sig, rdval, 100); /1 Enters in the source frequency node
rdval [ibcntl] = '\0"; /1 Null character indicating end of array

cout <<"Source frequency node is "<<rdval; // Print source frequency node
cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, "OUTP OFF", 12); /1 Turns off RF source
i bwt(sig, "OUTP?",5); /1l Querys the on/off state of the instrunent
i brd(sig,rdval, 2); /1l Enter in the source state

rdval [ibcntl] = "\0";
num= (int (rdval[0]) -('0"));

if (num> 0){
cout<<"Source RF state is : On"<<endl;
}el sef
cout<<"Source RF state is : Of"<<endl;}
cout <<endl ;
ibwt(sig, "*IDN?",5); /1l Querys the instrunent ID
i brd(sig, rdval, 100); /'l Reads the source ID
rdval [ibcntl] = '\0"; /1 Null character indicating end of array
cout<<"Source IDis : "<<rdVal; // Prints the source ID

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");
i bwrt(sig, "SYST: COWM GPI B: ADDR?", 20); //Querys source address

i brd(sig, rdval, 100); /'l Reads the source address
rdval [ibcntl] = '\0"; /1 Null character indicates end of array
/1 Prints the signal generator address
cout <<"Source GPIB address is : "<<rdVal;
cout <<endl ;
cout<<"Press the 'Local' key to return the signal generator to LOCAL control’<<endl;
cout<<endl;
return O;

}

44 Chapter 2

Programming Examples
GPIB Programming Examples

Queries Using VISA and C

This example uses VISA library functions to query different instrument states and conditions.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex3.cpp.

AR EEEEE SRR EEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEE]

// PROGRAM FI LE NAME: vi saex3. cpp

/1

/| PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query commands. The signal
/1 generator can be queried for conditions and instrunent states. These commands are of
/1 the type "*IDN?"; the question mark indicates a query.

/1

//**********~k~k**

#i ncl ude <vi sa. h>

#i ncl ude " St dAfx. h"
#i ncl ude <i ostreanp
#i ncl ude <conio. h>
#i ncl ude <stdlib. h>
usi ng nanespace std

void main ()

{
Vi Sessi on defaul tRM i ; /] Declares variables of type Vi Session
/1 for instrunent conmunication
Vi Status vi Status = 0; /'l Declares a variable of type Vi Status
/1 for GPIB verifications
char rdBuffer [256]; /'l Declares variable to hold string data
int num /'l Declares variable to hold integer data

/1 Initialize the VISA system
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19:: I NSTR', VI_NULL, WVI_NULL, &vi);
i f(viStatus)({ /1l 1f problenms, then pronpt user
printf("Could not open Vi Session!\n");
printf("Check instrunents and connections\n");

printf("\n");

exit(0);}
viPrintf(vi, "*RST\n"); /'l Resets signal generator
viPrintf(vi, "FREQ CWP\n"); /Il Querys the CWfrequency
vi Scanf (vi, "%", rdBuffer); /'l Reads response into rdBuffer

/1 Prints the source frequency
printf("Source CWfrequency is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1 Prints new line character to the display

Chapter 2 45

Programming Examples
GPIB Programming Examples

getch();
viPrintf(vi, "PONAMPL?\N"); /'l Querys the power |evel
vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer

/1 Prints the source power |evel
printf("Source power (dBm is : %\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); /1l Prints new line character to the display
getch();

viPrintf(vi, "FREQ MODE?\n"); /'l Querys the frequency node

vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer

/1l Prints the source freq node
printf("Source frequency node is : %\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); /1 Prints new line character to the display
getch();

viPrintf(vi, "OQUTP OFF\n"); /1l Turns source RF state off

viPrintf(vi, "OQUTP?\n"); /1l Querys the signal generator’s RF state
vi Scanf (vi, "%i", &nun; /] Reads the response (integer val ue)

/1l Prints the on/off RF state

if (num>0) {

printf("Source RF state is : on\n");
}el se{

printf("Source RF state is : off\n");
}

/1 Close the sessions

vi Cl ose(vi);
vi Cl ose(defaul tRVM ;

46 Chapter 2

Programming Examples
GPIB Programming Examples

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal
generator is set for a CW frequency of 500 kHz and a power level of —2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex4.cpp.

AR EEEEE SRR EEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEE]

11
11
11
11
11
11
11
11
/1

PROGRAM FI LE NAME: Vi saex4. cpp

PROGRAM DESCRI PTI ON: This exanpl e denpnstrates query conmands. The signal generator
frequency and power |evel.

The RF state of the signal generator is turn on and then the state is queried. The
response will indicate that the RF state is on. The RF state is then turned off and
qgueried. The response should indicate that the RF state is off. The query results are
printed to the to the display w ndow.

//~k~k~k~k~k~k~k~k~k~k~k~k**

#i ncl ude " St dAf x. h"
#i ncl ude <vi sa. h>

#i ncl ude <i ostreanp
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /1 Decl ares variabl es of type Vi Session
/1 for instrunent conmunication

Vi Status vi Status = O; /] Declares a variable of type Vi Status
/1 for GPIB verifications

char rdBuffer [256]; /1l Declare variable to hold string data

int num /] Declare variable to hold integer data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1l Initialize VISA system

/1 Open session to GPIB device at address 19
vi Status=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus){ /1l 1f problenms then pronpt user
printf("Could not open Vi Session!\n");
printf("Check instrunments and connections\n");

printf("\n");
exit(0);}
vViPrintf(vi, "*RST\n"); /'l Reset the signal generator
viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CWfrequency for 500 kHz
viPrintf(vi, "FREQ CWP\n"); /1l Query the CWfrequency
vi Scanf (vi, "%", rdBuffer); /'l Read signal generator response

printf("Source CWfrequency is : %\n", rdBuffer); // Print the frequency

Chapter 2 47

Programming Examples
GPIB Programming Examples

viPrintf(vi, "PONWAWMPL -2.3 dBmin"); // Set the power level to -2.3 dBm
viPrintf(vi, "PONAMPL?\N"); /1 Query the power |evel

vi Scanf (vi, "%", rdBuffer); /1l Read the response into rdBuffer
printf("Source power (dBm) is : %\n", rdBuffer); // Print the power |evel
viPrintf(vi, "OUTP: STAT O\\n"); // Turn source RF state on

viPrintf(vi, "OQUTP?2\n"); /1l Query the signal generator’'s RF state
vi Scanf (vi, "%i", &um; /'l Read the response (integer val ue)

/1 Print the on/off RF state

if (num>0) {

printf("Source RF state is : on\n");
}el sef

printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
viCear(vi);
vi Printf(vi,"OUTP: STAT OFF\n"); // Turn source RF state off
viPrintf(vi, "OQUTP?\n"); /1l Query the signal generator’'s RF state
vi Scanf (vi, "%i", &um; /'l Read the response

/1 Print the on/off RF state
if (num>0) {
printf("Source RF state is now on\n");

}el sef
printf("Source RF state is now off\n");
}
/1 Close the sessions
printf("\n");

viClear(vi);
vi Cl ose(vi);
vi Cl ose(defaul tRM ;

48 Chapter 2

Programming Examples
GPIB Programming Examples

Generating an Externally Applied AC-Coupled FM Signal Using VISA
and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier
frequency of 700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running
the program:

= Connect the output of a modulating signal source to the signal generator's EXT 2 input
connector.

= Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp
source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex5.cpp.

AR EEEEE SRR EEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEE]

/| PROGRAM FI LE NAME: vi saex5. cpp

/1

/| PROGRAM DESCRI PTI ON: Thi s exanpl e sets the signal generator FM source to External 2
/1 coupling to AC, deviation to 20 kHzZ, carrier frequency to 700 Miz and the power |eve
// to -2.5 dBm The RF state is set to on

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude " St dAfx. h"
#i ncl ude <i ostreanp
#include <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{
Vi Sessi on defaultRM vi; /1 Decl ares variables of type Vi Session
/1 for instrunent conmunication
Vi Status vi Status = O; /] Declares a variable of type Vi Status

/1 for GPIB verifications
/1 Initialize VISA session
vi St at us=vi OpenDef aul t RM &def aul t RV ;
/1l open session to gpib device at address 19
vi Status=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus){ /1 1f problems, then pronpt user
printf("Could not open Vi Session!\n");
printf("Check instrunments and connections\n")
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");

Chapter 2 49

Programming Examples
GPIB Programming Examples

printf("for an AC coupled FMsignal\n");
printf("Press any key to continue\n");
printf("\n");
getch();
printf("\n");
ViPrintf(vi, "*RST\n"); /]l Resets the signal generator
viPrintf(vi, "FM SOUR EXT2\n"); /1l Sets EXT 2 source for FM
viPrintf(vi, "FM EXT2: COUP AC\n"); /'l Sets FM path 2 coupling to AC
vViPrintf(vi, "FM DEV 20 kHz\n"); /] Sets FM path 2 deviation to 20 kHz
viPrintf(vi, "FREQ 700 MHz\n"); /'l Sets carrier frequency to 700 Mz
viPrintf(vi, "PONWAMPL -2.5 dBmin"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM STAT ONM\n"); /1 Turns on frequency nodul ation
viPrintf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put

/1 Print user information
printf("Power level : -2.5 dBmn");
printf("FMstate : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 700 wMHZ\n");
printf("Deviation : 20 kHzZ\n");
printf("EXT2 and AC coupling are selected\n");
printf("\n"); /1l Prints a carrage return

/1 C ose the sessions

vi Cl ose(vi);
vi Cl ose(defaul tRM ;

50

Chapter 2

Programming Examples
GPIB Programming Examples

Generating an Internal AC-Coupled FM Signal Using VISA and C

In this example the VISA library is used to generate an ac-coupled internal FM signal at a
carrier frequency of 900 MHz and a power level of -15 dBm. The FM rate will be 5 kHz and
the peak deviation will be 100 kHz. Launch Microsoft Visual C++ 6.0, add the required files,
and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex6.cpp.

AR EEEEE SRR EEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEE]

// PROGRAM FI LE NAME: vi saex6. cpp

/1

/| PROGRAM DESCRI PI ON: Thi s exanpl e generates an AC-coupled internal FM signal at a 900
/1 MHz carrier frequency and a power |level of -15 dBm The FMrate is 5 kHz and the peak
/] deviation 100 kHz

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude " St dAfx. h"
#i ncl ude <i ostreanp
#include <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{
Vi Sessi on defaul tRM vi; /1 Decl ares variables of type Vi Session
/1 for instrunent conmunication
Vi Status vi Status = O; /] Declares a variable of type Vi Status

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaul tRM; // Initialize VISA session
/1l open session to gpib device at address 19

vi Status=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus){ /1 1f problems, then pronpt user

printf("Could not open Vi Session!'\n");

printf("Check instrunments and connections\n");

printf("\n");

exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

viCear(vi); /1l Cears the signal generator
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "FM2:INT: FREQ 5 kHz\n"); // Sets EXT 2 source for FM
viPrintf(vi, "FM2:DEV 100 kHz\n"); /1l Sets FMpath 2 coupling to AC

Chapter 2 51

Programming Examples
GPIB Programming Examples

viPrintf(vi, "FREQ 900 MHz\n"); /'l Sets carrier frequency to 700 MHz
viPrintf(vi, "POW-15 dBmn"); /1 Sets the power level to -2.3 dBm
viPrintf(vi, "FM2:STAT ON\n"); /1 Turns on frequency nodul ation
viPrintf(vi, "OUTP: STAT ON\\n"); /1 Turns on RF output
printf("\n"); /1 Prints a carriage return
/1 Print user information
printf("Power level : -15 dBmn");
printf("FM state : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 900 MHZ\n");
printf("Deviation : 100 kHz\n");
printf("Internal nodulation : 5 kHz\n");
printf("\n"); /1l Print a carrage return
/1 Close the sessions
vi Cl ose(vi);
vi Cl ose(defaul tRVM ;
}
52 Chapter 2

Programming Examples
GPIB Programming Examples

Generating a Step-Swept Signal Using VISA and C

In this example the VISA library is used to set the signal generator for a continuous step
sweep on a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10
and the dwell time at each step is set to 500 ms. The signal generator will then be set to local
mode which allows the user to make adjustments from the front panel. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex7.cpp.

AR EEEEE SRR EEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

// PROGRAM FI LE NAME: vi saex7. cpp

/1

/| PROCGRAM DESCRI PTI ON: This exanple will programthe signal generator to performa step
/1 sweep from500-800 MHz with a .5 sec dwell at each frequency step.

/1

IR SRR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEEE]

#i ncl ude <vi sa. h>
#i ncl ude " St dAfx. h"
#i ncl ude <i ostreant

void main ()

{
Vi Sessi on defaul tRM vi; /1 Declares variables of type Vi Session
/1 vi establishes instrument conmunication
Vi Status vi Status = 0; // Declares a variable of type Vi Status

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaul tRM; // Initialize VISA session
/1l Open session to GPIB device at address 19
vi Status=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus){ /1 1f problens, then prompt user
printf("Could not open Vi Session!\n");
printf("Check instrunments and connections\n");

printf("\n");

exit(0);}
viCl ear(vi); /1 Clears the signal generator
ViPrintf(vi, "*RST\n"); /1l Resets the signal generator
vViPrintf(vi, "*CLS\n"); /1 Clears the status byte register
viPrintf(vi, "FREQ MODE LI ST\n"); /] Sets the sig gen freq node to list
viPrintf(vi, "LIST: TYPE STEP\n"); /1l Sets sig gen LIST type to step

viPrintf(vi, "FREQ STAR 500 MHz\n"); [/ Sets start frequency
viPrintf(vi, "FREQ STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:PON 10\n"); /1 Sets nunmber of steps (30 nHz/step)
ViPrintf(vi, "SWE:DWEL .5 S\n"); /1l Sets dwell tine to 500 ns/step
viPrintf(vi, "PONWAWMPL -5 dBm n"); /] Sets the power level for -5 dBm
viPrintf(vi, "OUTP: STAT ON\\n"); /1 Turns RF output on

Chapter 2 53

Programming Examples
GPIB Programming Examples

viPrintf(vi, "INIT: CONT O\\n"); /] Begins the step sweep operation
/1 Print user infornation
printf("The signal generator is in step sweep node. The frequency range

is\n");
printf("500 to 800 nHz. There is a .5 sec dwell tinme at each 30 nHz
step.\n");
printf("\n"); /1l Prints a carriage return/line feed
viPrintf(vi, "QUTP: STAT OFF\n"); /1 Turns the RF output off

printf("Press the front panel Local key to return the\n");
printf("signal generoator to manual operation.\n");

/'l Closes the sessions
printf("\n");
vi C ose(vi);
vi Cl ose(defaul tRM ;

54

Chapter 2

Programming Examples
GPIB Programming Examples

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These
settings can then be recalled separately; either from the keyboard or from the signal
generator’s front panel. Launch Microsoft Visual C++ 6.0, add the required files, and enter the
following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex8.cpp.

AR EEEEE SRR EEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEE]

11
11
11
11
11
11
11
11
/1
11
/1

PROGRAM FI LE NAME: vi saex8. cpp

PROGRAM DESCRI PTION: I n this exanple, instrument settings are saved in the signal
generator’s registers and then recall ed.

Instrunment settings can be recalled fromthe keyboard or, when the signal generator
is put into Local control, fromthe front panel.

This programw Il initialize the signal generator for an instrunent state, store the
state to register #1. An *RST command will reset the signal generator and a *RCL
command will return it to the stored state. Following this renote operation the user
will be instructed to place the signal generator in Local node.

[R R K Kk kK K ok ok kK Kk ok kK R K K ok kR K R ko Kk Rk ko kR Rk ok o kR Rk R kR R kR o R R ok kR R R ok ok R R Rk R kR Rk ok kK

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreans
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaultRM vi; /1 Declares variables of type Vi Session
[/ for instrument communication

Vi Status vi Status = 0; /1 Declares a variable of type Vi Status
/1 for GPIB verifications

I ong | ngDone = 0; // Operation conplete flag

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session

/1 Open session to gpib device at address 19
vi St atus=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus)({ /1 |f problens, then pronpt user
printf("Could not open Vi Session!\n");
printf("Check instrunments and connections\n");

printf("\n");

exit(0);}
printf("\n");
viCear(vi); /1l Cears the signal generator
viPrintf(vi, "*CLS\n"); /]l Resets the status byte register

/1 Print user information
printf("Programm ng exanple using the *SAV, *RCL SCPI comands\ n");

Chapter 2 55

Programming Examples
GPIB Programming Examples

printf("used to save and recall an instrunent’s state\n");

printf("\n");
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "FREQ 5 MHz\n"); /'l Sets sig gen frequency
viPrintf(vi, "PONALC OFF\n"); /1 Turns ALC O f
viPrintf(vi, "PONWAWPL -3.2 dBmn"); // Sets power for -3.2 dBm
viPrintf(vi, "OQUTP: STAT O\\n"); /1l Turns RF output On
viPrintf(vi, "*OPC\n"); /'l Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"%", & ngDone); /1 Waits for setup to conplete
ViPrintf(vi, "*SAV 1\n"); /]l Saves sig gen state to register #1

/1 Print user information

printf("The current signal generator operating state will be saved\n");
printf("to Register #1. Cbserve the state then press Enter\n");
printf("\n"); /1 Prints new line character
getch(); /1 Wait for user input
| ngDone=0; /1l Resets the operation conplete flag
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "*OPC\n"); /'l Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"%l", & ngDone) ; /1 Waits for setup to conplete

/1 Print user infromation
printf("The instrument is nowin it's Reset operating state. Press the\n");
printf("Enter key to return the signal generator to the Register #1

state\n");

printf("\n"); /1l Prints new |line character
getch(); /1l Waits for user input
| ngDone=0; /'l Reset the operation conplete flag
viPrintf(vi, "*RCL 1\n"); /'l Recalls stored register #1 state
viPrintf(vi, "*OPC?\n"); /'l Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"%", & ngDone); /1 Waits for setup to conplete

/1 Print user information
printf("The signal generator has been returned to it’'s Register #1

state\n");

printf("Press Enter to continue\n");
printf("\n"); /1l Prints new |line character
getch(); /1 Waits for user input
| ngDone=0; /'l Reset the operation conplete flag
ViPrintf(vi, "*RST\n"); /1l Resets the signal generator
viPrintf(vi, "*OPC?\n"); /'l Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"%", & ngDone); /1 Waits for setup to conplete

/1 Print user infornation
printf("Press Local on instrument front panel to return to manual node\n");
printf("\n"); /1 Prints new |line character

/1 Close the sessions
vi Cl ose(vi);

vi Cl ose(defaul tRVM ;

56 Chapter 2

Programming Examples
GPIB Programming Examples

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be
asked to set up the signal generator for error generating conditions. The data questionable
status register will be read and the program will notify the user of the error condition that the
setup caused. Follow the user prompts presented when the program runs. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex9.cpp.

[] %k kK ok ok ok kK ok ok kK Kk ok o kK Kk ok kK R ok o kR R ok o kR Rk ok o kR Rk ok o ok ok kR R ok ok R kR R R ok ok kK Rk ok ok kK

/| PROGRAM NAME: vi saex9. cpp

/1

// PROGRAM DESCRI PTION: I n this exanple, the data questionable status register is read.
// The data questionable status register is enabled to read an unl evel ed condition.

/1 The signal generator is then set up for an unleveled condition and the data

/'l questionable status register read. The results are then displayed to the user.

/] The status questionable register is then setup to nmonitor a nodul ation error condition.
/1 The signal generator is set up for a nodulation error condition and the data

/'l questionable status register is read.

// The results are displayed to the active w ndow.

11

IR AR R EEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEE

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanr
#i ncl ude <coni o. h>

void main ()

{
Vi Sessi on defaultRM vi; /1 Declares a variables of type Vi Session
// for instrument communication
Vi Status vi Status = 0; /1 Declares a variable of type Vi Status
/1 for GPIB verifications
int nun¥0; /] Declares a variable for switch statenents
char rdBuffer[256] ={0}; /1l Declare a variable for response data
vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session

/1 Open session to GPIB device at address 19

vi Status=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
i f(viStatus)({ /1l 1f problenms, then pronpt user
printf("Could not open Vi Session!\n");
printf("Check instrunents and connections\n");
printf("\n");
exit(0);}
printf("\n");

Chapter 2 57

Programming Examples
GPIB Programming Examples

viC ear(vi);

// Clears the signal generator

/1 Printsuser information
printf("Programm ng exanple to denpnstrate reading the signal generator’s

Status Byte\n");
printf("\n");

printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("* Set signal generator output anplitude to +20 dBmn");

printf("* Set frequency to nmaxi num val ue\n");

printf("* Turn On signal generator’s RF Qutput\n");

printf("* Check signal generator’s display for the UNLEVEL annuni ator\n");

printf("\n");
printf("Press Enter when ready\n");
printf("\n");
getch();
viPrintf(vi, "STAT: QUES: PON ENAB 2\ n");

/1
viPrintf(vi, "STAT: QUES: PON COND?\ n");

/1
vi Scanf (vi, "9%", rdBuffer);

/1
nunme(int (rdBuffer[1]) -('0"));

/1

/1 Waits for keyboard user input
/1 Enabl es the Data Questionabl e
/1 Power Condition Register Bits
Bits 'O’ and 'l

/1 Querys the register for any
set bits

/! Reads the decimal sum of the
set bits

/1l Converts string data to
numeri c

switch (num /1 Based on the deciml value

{
case 1:
printf("Signal Generator Reverse Power Protection
Tri pped\n");
printf("/n");
br eak;
case 2:
printf("Signal Generator Power is Unlevel ed\n");
printf("\n");
br eak;
defaul t:
printf("No Power Unleveled condition detected\n");
printf("\n");
viCear(vi); /1l Cears the signal generator
/1 Prints user information
T 1 B e e R R R R \n");

printf("\n");

printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("\n");

printf("* Select AM nodul ati on\n");

printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

printf("* Turn On the nodul ation.\n");

printf("* Do not connect any source to the input\n");

printf("* Check signal generator’s display for the EXT1 LO annunci ator\n");
printf("\n");

58

Chapter 2

printf("Press Enter when ready\n");

printf("\n");
getch();

vi Printf(vi, "STAT: QUES: MOD: ENAB 16\ n");

viPrintf(vi, "STAT: QUES: MOD: COND?\ n") ;

vi Scanf (vi, "%"

nunm=(int (rdBuffer[1])

switch (num
{

case 1:

case 2:

case 4:

case 8:

case 16:

defaul t:

}

vi Cl ose(vi);
vi Cl ose(def aul t

, rdBuffer);

printf("Signal
printf("\n");
br eak;

printf("Signal
printf("\n");
br eak;

printf("Signal
printf("\n");
br eak;

printf("Signal
printf("\n");
br eak;

printf("Signal
printf("\n");
br eak;

printf("No Problems with

printf("\n");

RM;

-(70)):

Cener at or

Cener at or

Cener at or

Cener at or

Cener at or

Programming Examples
GPIB Programming Examples

/1 Waits for keyboard user input
/'l Enabl es the Data Questionabl e
/1 Modul ati on Condition Register

/l bits 0,1 ,'2",’3 and 4

/'l Querys the register for any

/1 set bits

/1 Reads the decimal sum of the

I/ set bits
/1l Converts string data to nuneric

/1l Based on the deciml value

Modul ation 1 Undernod\n");

Modul ation 1 Overnmod\n");

Modul ati on 2 Under nod\ n");

Modul ation 2 Overnmod\n");

Modul ation Uncalibrated\n");

Modul ati on\n");

/1 C ose the sessions

Chapter 2

59

Programming Examples
GPIB Programming Examples

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ,
the computer can attend to other tasks while the signal generator is busy performing a
function or operation. When the signal generator finishes it's operation, or detects a failure,
then a Service Request can be generated. The computer will respond to the SRQ and,
depending on the code, can perform some other operation or notify the user of failures or other
conditions.

This program sets up a step sweep function for the signal generator and, while the operation
is in progress, prints out a series of asterisks. When the step sweep operation is complete, an
SRQ is generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex10.cpp.

AR SRR EEEEEEEEREEEEEEREEEEEEEEEEEEEREEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

/1

/| PROGRAM FI LE NAME: vi saex10. cpp

/1

// PROGRAM DESCRI PTI ON: Thi s exanpl e denponstrates the use of a Service Request (SRQ

/1 interupt. The program sets up conditions to enable the SRQ and then sets the signa
/1 generator for a step node sweep. The programwi |l enter a printing |loop which prints
// an * character and ends when the sweep has conpl eted and an SRQ recei ved

/1

INEEEEE AR R R R R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEREEEEEEEE]

#i ncl ude "visa.h"

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude "wi ndows. h"
#i ncl ude <coni o. h>

#define MAX_CNT 1024
int sweep=1; // End of sweeep flag
/* Prototypes */

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType event Type, Vi Event event, Vi Addr
addr);

int main ()
{
Vi Sessi on defaul tRM i ; /| Declares variables of type Vi Session
[/ for instrument conmmunication

60 Chapter 2

Programming Examples
GPIB Programming Examples

Vi Status vi Status = 0; /| Declares a variable of type Vi Status
/1 for GPIB verifications
char rdBuf fer[MAX_CNT] ; /1 Declare a block of nenory data

vi St at us=vi QpenDef aul t RM &defaul tRM;// Initialize VISA session

i f(viStatus < VI _SUCCESS){ /1 1f problenms, then pronpt user
printf("ERROR initializing VISA .. exiting\n");
printf("\n");

return -1; }

/1l Open session to gpib device at address 19

vi St atus=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);

i f(viStatus){ /1 1f problenms then prompt user
printf("ERROR Could not open conmunication with

instrument\n");

printf("\n");
return -1; }
viCl ear(vi); /]l Clears the signal generator
ViPrintf(vi, "*RST\n"); /'l Resets signal generator

/1 Print program header and information
printf("** End of Sweep Service Request **\n");
printf("\n");
printf("The signal generator will be set up for a step sweep node
operation.\n");
printf("An "* will be printed while the instrument is sweeping. The end of

\n");
printf("sweep will be indicated by an SRQ on the GPIB and the program will
end.\n");
printf("\n");
printf("Press Enter to continue\n");
printf("\n");
getch();
ViPrintf(vi, "*CLS\n"); /I Clears signal generator status byte

ViPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status Group
/I Negative Transition Filter to indicate a
/I negative transition in Bit 3 (Sweeping)
/I which will set a corresponding event in
/I the Operation Event Register. This occurs
/I the end of a sweep.
ViPrintf(vi, "STAT:OPER:PTR 0\n");// Sets the Operation Status Group
// Positive Transition Filter so that no
/I positive transition on Bit 3 affects the
/l Operation Event Register. The positive
/I transition occurs at the start of a sweep.
ViPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3
/I to report the event to Status Byte
/I Register Summary Bit 7.
ViPrintf(vi, "*SRE 128\n"); /I Enables Status Byte Register Summary Bit 7
/I The next line of code indicates the
/I function to call on an event

Chapter 2

61

Programming Examples
GPIB Programming Examples

}

vi Status = vilnstallHandl er(vi, VI_EVENT_SERVI CE_ REQ interupt, rdBuffer);
/1 The next line of code enables the
/1 detection of an event

vi Status = vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI_HNDLR, VI _NULL);

viPrintf(vi, "FREQ MODE LIST\n");// Sets frequency node to |ist
viPrintf(vi, "LIST: TYPE STEP\n");// Sets sweep to step

ViPrintf(vi, "LIST: TRRG SOUR IMMn");// Imediately trigger the sweep
viPrintf(vi, "LIST: MODE AUTONn");// Sets node for the list sweep
viPrintf(vi, "FREQ STAR 40 MHZ\n"); // Start frequency set to 40 MHz
viPrintf(vi, "FREQ STOP 900 MHz\n");// Stop frequency set to 900 MHz
viPrintf(vi, "SWE:PON 25\n");// Set nunber of points for the step sweep
viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

ViPrintf(vi, "INIT: CONT OFF\n");// Set up for single sweep
viPrintf(vi, "TRIG SOUR IMANn");// Triggers the sweep
ViPrintf(vi, "INNT\n"); /1 Takes a single sweep
printf("\n");

/1 While the instrument is sweeping have the
/1 programbusy with printing to the display.
/'l The Sleep function, defined in the header
/1 file windows.h, will pause the program
/1 operation for .5 seconds
whil e (sweep==1){
printf("*");
Sl eep(500);}

printf("\n");
/1 The following lines of code will stop the
/1 events and close down the session

vi Status = vi Di sabl eEvent (vi, VI_ALL_ENABLED EVENTS, VI _ALL_MECH);

vi Status = vi Uninstal | Handl er (vi, VI_EVENT_SERVI CE_REQ i nterupt,

rdBuffer);

vi Status = vi C ose(vi);

vi Status = vi C ose(defaul tRM;

return O;

/1 The follow ng function is called when an SRQ event occurs. Code specific to your

/1

requi rements would be entered in the body of the function.

Vi Status _VI_FUNCH interupt (Vi Session vi, ViEventType eventType, Vi Event event, Vi Addr

addr)
{
Vi St atus status;
ViUl nt16 stb;
status = vi ReadSTB(vi, &stb); // Reads the Status Byte
sweep=0; I Sets the flag to stop the " printing
printf("\n"); /I Print user information
printf("An SRQ, indicating end of sweep has occurred\n");
62 Chapter 2

Programming Examples
GPIB Programming Examples

vi Cl ose(event); /1 Closes the event
return VI _SUCCESS;

Chapter 2 63

Programming Examples
LAN Programming Examples

LAN Programming Examples

e “VXI-11 Programming Using SICL in C” on page 65

e “VXI-11 Programming Using VISA in C” on page 66

= “Setting Parameters and Sending Queries Using Sockets and C” on page 72
= “Setting the Power Level and Sending Queries Using PERL” on page 89

= “Generating a CW Signal Using Java” on page 91

The LAN programming examples in this section demonstrate the use of VXI-11 and Sockets
LAN to control the signal generator. For details on using FTP and TELNET refer to “Using
FTP” on page 24 and “Using TELNET LAN” on page 20 of this guide.

Before Using the Examples

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.

64 Chapter 2

Programming Examples
LAN Programming Examples

VXI-11 Programing

The signal generator supports the VXI-11 standard for instrument communication over the
LAN interface. Agilent 10 Libraries support the VXI-11 standard and must be installed on
your computer before using the VXI-11 protocol. Refer to “Using VXI-11” on page 17 of this
Programming Guide for information on configuring and using the VVXI-11 protocol.

The VXI-11 examples use TCPIPO as the board address.

VXI-11 Programming Using SICL in C

The following program uses the VXI-11 protocol and SICL to control the signal generator. The
signal generator is set to a 1 GHz CW frequency and then queried for its ID string. Before
running this code, you must set up the interface using the Agilent 10 Libraries 10 Config
utility.

The following program example is available on the PSG Family Documentation CD-ROM as
vxisicl.cpp.

AR EE RS EEREEEEEEREEE]

/1

/| PROGRAM NAME: vXi sicl.cpp

/1

/| PROGRAM DESCRI PTI ON: Sanpl e test programusing SICL and the VXl -11 protocol

/1

/1 NOTE: You nust have the Agilent IO Libraries installed to run this program

/1

/1 This exanple uses the VXI-11 protocol to set the signal generator for a 1 gHz CW
/1 frequency. The signal generator is queried for operation conplete and then queried
// for its ID string. The frequency and ID string are then printed to the display

/1

/1 1 MPORTANT: Enter in your signal generators hostname in the instrunmentNane decl aration
/1 where the "xxxxx" appears

/1

[KRR K Kk kK ok ok ok kK Kk ok Kk K K ko kR K R K o kR Rk ok kR R ok ok kR Rk ok kR R ok R o R Rk ok R R R ok ok R R Rk R kR Rk ok kK

#i ncl ude "stdaf x. h"
#i nclude <sicl.h>

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

int main(int argc, char* argv[])

{
I NST i d; /| Device session id
i nt opcResponse; /1 Variable for response flag
char instrunentName[] = "xxxxx"; [/ Put your instrunment’s hostnanme here
char i nst NaneBuf [256] ; // Variable to hold instrument name

Chapter 2 65

Programming Examples
LAN Programming Examples

char buf[256]; // Variable for id string
ionerror(l_ERROR EXIT); /'l Register SICL error handler

/1 Open SICL instrunment handl e using VXI-11 protocol

sprintf(instNaneBuf, "lan[%]:inst0", instrumentNane);
id = iopen(instNanmeBuf); /1 Open instrunment session
itimeout(id, 1000); /1 Set 1 second tinmeout for operations

printf("Setting frequency to 1 Ghz...\n");
iprintf(id, "freq 1 GHz\n"); // Set frequency to 1 GHz

printf("Waiting for source to settle...\n");

iprintf(id, "*opc?\n"); /'l Query for operation conplete
iscanf(id, "%", &opcResponse); [/ Operation conplete flag
if (opcResponse != 1) // 1f operation fails, pronpt user
{

printf("Bad response to ' OPC? \n");

iclose(id);

exit(1l);

}

iprintf(id, "FREQ?\n"); /1 Query the frequency
iscanf(id, "%", &buf); /1 Read the signal generator frequency
printf("\n"); /1 Print the frequency to the display

printf("Frequency of signal generator is %\n", buf);
ipromptf(id, "*IDN2An", "%", buf);// Query for id string
printf("Instrument ID. %\n", buf);// Print id string to display
iclose(id); // Close the session

return O;

}

VXI-11 Programming Using VISA in C

The following program uses the VXI-11 protocol and the VISA library to control the signal
generator. The signal generator is set to a 1 GHz CW frequency and queried for its ID string.
Before running this code, you must set up the interface using the Agilent 10 Libraries 10
Config utility.

The following program example is available on the PSG Family Documentation CD-ROM as
vxivisa.cpp.

//**

/| PROGRAM FI LE NAME: vxi vi sa. cpp

// Sanple test programusing the VISA libraries and the VXl -11 protocol

/1

// NOTE: You nust have the Agilent Libraries installed on your conputer to run
/1 this program

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e uses the VXI-11 protocol and VISA to query
/1 the signal generator for its ID string. The ID string is then printed to the

66 Chapter 2

Programming Examples
LAN Programming Examples

/'l screen. Next the signal generator is set for a -5 dBm power |evel and then
/1 queried for the power level. The power level is printed to the screen.

/1

/1 1 MPORTANT: Set up the LAN Client using the IO Config utility

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAfx. h"
#include <stdlib. h>
#i ncl ude <coni o. h>

#defi ne MAX_COUNT 200

int main (void)

{

Vi St at us st at us; /1 Declares a type Vi Status variable

Vi Session defaultRM instr; /1 Declares a type Vi Session variable

Vi Ul nt 32 ret Count; /1 Return count for string I/0O

Vi Char buf f er [MAX_COUNT] ; /1 Buffer for string I/0O

status = vi OpenDef aul t RM &defaul t RV ; /1l Initialize the system
/1 Open conmuni cation with Serial
/Il Port 2

status = vi Open(defaultRM "TPCIPO::19::INSTR', VI _NULL, VI_NULL, & nstr);

i f(status){ /1 1f problems then pronpt user

printf("Could not open Vi Session!'\n");

printf("Check instrunments and connections\n");

printf("\n");

exit(0);}

/1 Set timeout for 5 seconds
vi Set Attribute(instr, VI_ATTR_TMO VALUE, 5000);
/'l Ask for sig gen ID string

status = viWite(instr, (ViBuf)"*IDN?\n", 6, & etCount);

/1l Read the sig gen response
status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0"; /1 Indicate the end of the string
printf("Signal Generator ID="); /1l Print header for ID
printf(buffer); /1l Print the ID string
printf("\n"); /1 Print carriage return

/1 Flush the read buffer

/1 Set sig gen power to -5dbm
status = viWite(instr, (ViBuf)"PONAMPL -5dbm n", 15, &retCount);

/1l Query the power |evel
status = viWite(instr, (ViBuf)"POAN\nNn",5, & et Count);

/! Read the power |evel

Chapter 2 67

Programming Examples
LAN Programming Examples

status = vi Read(instr, (ViBuf)buffer,
buffer[retCount]= "\0";
printf("Power level =");
printf(buffer);

printf("\n");

status = vi Cl ose(instr);

status = vi C ose(defaul tRM;

return O;

MAX_COUNT, &ret Count);
/1 Indicate the end of the string
/1 Print header to the screen
/1 Print the queried power |evel

/1 C ose down the system

68

Chapter 2

Programming Examples
LAN Programming Examples

Sockets LAN Programming using C

The program listing shown in “Setting Parameters and Sending Queries Using Sockets and C”
on page 72 consists of two files; lanio.c and getopt.c. The lanio.c file has two main functions;
int nmain() andanint mainl().

The i nt mai n() function allows communication with the signal generator interactively from
the command line. The program reads the signal generator's hostname from the command
line, followed by the SCPI command. It then opens a socket to the signal generator, using port
7777, and sends the command. If the command appears to be a query, the program queries the
signal generator for a response, and prints the response.

The int mainl(), after renaming to int main(), will output a sequence of commands to the
signal generator. You can use the format as a template and then add your own code.

This program is available on the PSG Family Documentation CD-ROM as lanio.c

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only
difference is the openSocket() routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwrite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example,
[users/nydir/.

2. At the UNIX prompt in your home directory type: cc -Aa -O -0 lanio lanio.c

3. At the UNIX prompt in your home directory type: ./lanio xxxxx “*IDN?”" where
xxxxx is the hostname for the signal generator. Use this same format to output SCPI
commands to the signal generator.

Chapter 2 69

Programming Examples
LAN Programming Examples

Theint mainl() function will output a sequence of commands in a program format. If you
want to run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int nainl() toint nain() and the originalint nain() toint
mai n1().

2. Inthe nmai n(), openSocket () function, change the “your hostname here” string to the
hostname of the signal generator you want to control.

3. Resave the lanio.c program

4. At the UNIX prompt type:cc -Aa -O -0 lanio lanio.c

5. At the UNIX prompt type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal generator. The
UNIX display will show a display similar to the following:

uni x machi ne: /users/nydir
$./lanio
ID: Agilent Technol ogi es, E8254A, US00000001, C. 01.00

Frequency: +2. 5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not
work on sockets. The following steps outline the process for running the interactive program
in the Microsoft Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source
folder of the Visual C++ project.

2. Select Rebuild All from Build menu. Then select Execute Lanio.exe.
3. Click Start, click Programs, then click Command Prompt.

4. At the command prompt, cd to the directory containing the lanio.cpp file and then to the
Debug folder. For example C:\SocketlO\Lanio\Debug

5. Type in lanio xxxxx “*IDN?" at the command prompt. For example:
C:\SocketlO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of
your signal generator. Use this format to output SCPI commands to the signal generator in
a line by line format from the command prompt.

6. Type exit at the command prompt to quit the program.

70 Chapter 2

Programming Examples
LAN Programming Examples

Theint mainl() function will output a sequence of commands in a program format. If you
want to run a program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the mai n1()
function of the lanio.c program

2. Rename the lanio.cpp int nmai n1() function toint nai n() and the original i nt nai n()
functiontoint mainl().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-1.

Figure 2-1 Program Output Screen

‘s "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E82542, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

ce914a

Chapter 2 71

Programming Examples
LAN Programming Examples

Setting Parameters and Sending Queries Using Sockets and C

The following programming examples are available on the PSG Family Documentation
CD-ROM as lanio.c and getopt.c.

/***

$Header: | ani o.c 04/24/01
$Revision: 1.1 $

$Dat e: 04/24/01

PROGRAM NAME: | anio.c

$Descri ption: Functions to talk to an Agilent signal generator
via TCP/IP. Uses conmand-|ine argunents.

A TCP/I P connection to port 7777 is established and

the resultant file descriptor is used to "talk" to the
i nstrunent using regul ar socket 1/0O nechanisns. $

Exanpl es:

Query the signal generator frequency:
| ani 0 xXx. xxx. xx.Xx ' FREQ?’

Query the signal generator power |evel:
I ani 0 xX. xXxx.xx.x ' POAP’

Check for errors (gets one error):
| ani 0 XX.XXX.XX. X 'syst:err?

Send a list of comands froma file, and nunber them
cat scpi_cmds | lanio -n XX.XXX.XX. X

R R R R R R R R R S

This program conpil es and runs under
- HP-UX 10.20 (UNI X), using HP cc or gcc:
+ cc -Aa -O-0 lanio lanio.c
+ gcc -Wall -O -0 lanio lanio.c

- Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

- Wndows NT 3.51, using Mcrosoft Visual C++ 4.0
+ Be sure to add WSOCK32.LIB to your list of libraries!
+ Conpile both lanio.c and getopt.c
+ Consider re-nanming the files to | anio.cpp and getopt.cpp

Consi der ati ons:
- On UNIL X systens, file I/O can be used on network sockets.
Thi s makes progranmi ng very conveni ent, since routines |ike
getc(), fgets(), fscanf() and fprintf() can be used. These

72

Chapter 2

Programming Examples
LAN Programming Examples

* routines typically use the lower level read() and wite() calls.

*

* - In the Wndows environnent, file operations such as read(), wite(),
* and cl ose() cannot be assumed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

***/

/* Support both Wn32 and HP-UX UNI X environment */

#i f def _WN32 /* Visual C++ 6.0 will define this */
define W NSOCK
#endi f

#i f ndef W NSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endi f

#i ncl ude <stdio. h> /[* for fprintf and NULL */
#i ncl ude <string. h> /* for nencpy and nmenset */
#i ncl ude <stdlib. h> /* for malloc(), atol () */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK
#i ncl ude <wi ndows. h>

ifndef _W NSOCKAPI _
include <winsock.h> // BSD-style socket functions

endif

#el se /* UNIX with BSD sockets */
include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */
include <netdb. h> /* for gethostbynanme */

define SOCKET_ERROR (-1)
define | NVALI D_SOCKET (-1)

typedef int SOCKET;
#endi f /* WNSOCK */

#i f def W NSOCK

/* Declared in getopt.c. See exanple progranms disk. */

extern char *optarg;

extern int optind;

extern int getopt(int argc, char * const argv[], const char* optstring);
#el se

Chapter 2 73

Programming Examples
LAN Programming Examples

include <unistd. h> /* for getopt(3C) */
#endi f

#defi ne COMWWAND_ERROR (1)
#define NO_CVMD_ERROR (0)

#define SCPI_PORT 7777
#define | NPUT_BUF_SI ZE (64*1024)

/**

* Di splay usage

LA E R EEEEEEEEEEEEEEEREELY]

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<conmand>]\n", basenane);
fprintf(stderr," % [-nqu] <hostnane> < stdin\n", basenane);
fprintf(stderr," -n, nunmber output lines\n");
fprintf(stderr," -q, quiet; do NOT echo lines\n");
fprintf(stderr," -e, show nessages in error queue when done\n");

}

#i f def W NSOCK
int init_w nsock(void)

{
WORD wWer si onRequest ed;
WSADATA wsaDat a;
int err;
wVer si onRequest ed = MAKEWORD(1, 1);
wVer si onRequest ed = MAKEWORD(2, O0);
err = WBASt art up(w\Wer si onRequest ed, &wsaDat a) ;
if (err '=0) {
/* Tell the user that we couldn’t find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");
return -1;
}
return O;
}
int close_w nsock(void)
{
WSAC eanup() ;
return O;
}

#endi f /* WNSOCK */

74

Chapter 2

Programming Examples
LAN Programming Examples

B R RS SRR EEEEREEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEE]

> $Function: openSocket$

$Description: open a TCP/IP socket connection to the instrument $

$Paraneters: $

(const char *) hostnane Network nanme of instrument.
This can be in dotted deci mal notation.
(int) portNunber The TCP/IP port to talk to.
Use 7777 for the SCPI port.
$Return: (int) Afile descriptor simlar to open(l).$%$
$Errors: returns -1 if anything goes wong $

LA E R EEEEEEEEREEEEEEREEY]

SOCKET openSocket (const char *hostnane, int portNunber)

{

struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;
SOCKET s;

nmenset (&peeraddr _in, 0, sizeof(struct sockaddr_in));

/***/

/* map the desired host nane to internal form */

/***/

host Ptr = get host bynane(host nane) ;

if (hostPtr == NULL)

{
fprintf(stderr,"unable to resolve hostname '%’\n", hostnane);
return | NVALI D_SOCKET;

}

[RARERK KKk kK kK ok ok ok kK kkk [

/* create a socket */
/*******************/
s = socket (AF_I NET, SOCK_STREAM 0);
if (s == I NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to '%’': %\n",
host name, strerror(errno));
return | NVALI D_SOCKET;

}

nmencpy(&peeraddr _i n. si n_addr.s_addr, hostPtr->h_addr, hostPtr->h_|l ength);

Chapter 2 75

Programming Examples
LAN Programming Examples

peeraddr_in.sin_fam ly = AF_I NET;
peeraddr_in.sin_port = htons((unsigned short)portNunber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,
si zeof (struct sockaddr _in)) == SOCKET_ERROR)

{
fprintf(stderr,"unable to create socket to '%': %\n",
host name, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

AR R R R AR R RS EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEREEEEEEEEEEEEEE]

*

> $Function: conmandl nstrument$
* $Description: send a SCPl command to the instrument.$

* $Paranmeters: $

* (FILE*) file pointer associated with TCP/IP socket.
* (const char *conmand) . . SCPI conmand string.

* $Return: (char *) a pointer to the result string.

*

* $Errors: returns O if send fails $

***/

i nt conmandl nstrunment (SOCKET sock,
const char *conmand)

{
int count;
/* fprintf(stderr, "Sending \"%\".\n", conmand); */
if (strchr(conmand, '\n’) == NULL) {
fprintf(stderr, "Warning: m ssing newline on command %.\n", conmmand);
}
count = send(sock, conmand, strlen(conmand), O0);
if (count == SOCKET_ERROR) ({
return COVWAND_ERROR;
}
return NO_CMD_ERROR;
}

[K Kk kK ok ok ok ok ok ok kR Kk kK R R R R Kk R R ok kR R R R o Kk Rk R kR Rk R kR ok Rk R Rk kK

* recv_line(): simlar to fgets(), but uses recv()

76 Chapter 2

Programming Examples
LAN Programming Examples

LA EEEEEEEEEEEEEEEREEELY]

char * recv_line(SOCKET sock, char * result, int maxLength)

{

#i f def W NSOCK
int cur_length = 0;
int count;
char * ptr = result;
int err = 1;

while (cur_length < maxLength) {
/* CGet a byte into ptr */
count = recv(sock, ptr, 1, 0);

/* 1f no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

/* 1f we hit a newmine, stop. */

if (*ptr =="'\n") {
ptr++;
err = 0;
br eak;
}
ptr++;
}
*ptr = '\0";
if (err) {
return NULL;
} else {
return result;
}
#el se

AR R R EEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEE LR

* Sinmpler UNI X version, using file I/O recv() version works too.

* This denpnstrates how to use file I/0O on sockets, in UN X
***/
FILE * instFile;

instFile = fdopen(sock, "r+");

if (instFile == NULL)

{
fprintf(stderr, "Unable to create FILE * structure : %\n",
strerror(errno));
exit(2);
}
return fgets(result, maxLength, instFile);
#endi f

Chapter 2 77

Programming Examples
LAN Programming Examples

B R RS SRR EEEEREEE]

*

* Vv

$Function: querylnstrunment$
$Description: send a SCPI conmmand to the instrunent, return a response.$

$Paranmeters: $

(FILE*) file pointer associated with TCP/IP socket.

(const char *conmand) . . SCPI conmand string.

(char *result) where to put the result.

(size_t) maxLength maxinumsize of result array in bytes.
$Return: (long) The nunber of bytes in result buffer.
$Errors: returns 0 if anything goes wong. $

***/

| ong queryl nstrunent (SOCKET sock,

const char *conmand, char *result, size_t nmaxLength)

I ong ch;
char tnp_buf[8];
long resultBytes = O;
int conmand_err;
int count;
/***
* Send conmmand to signal generator
~k~k~k~k~k~k***/
conmmand_err = conmmandl nstrunent (sock, conmand);
if (command_err) return COVMAND_ERROR;
/***
* Read response from signal generator
**/
count = recv(sock, tnmp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];
if ((count < 1) || (ch == EOF) || (ch =="\n"))

result ='\0"; / null terminate result for ascii */

return O;
/* use a do-while so we can break out */
do

78 Chapter 2

Programming Examples
LAN Programming Examples

if (ch=="#)
{
/* binary data encountered - figure out what it is */
I ong nunDigits;
I ong nunBytes = 0;
/* char | ength[10]; */

count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];
if ((count < 1) || (ch == EOF)) break; /* End of file */

if (ch<’0 || ch>"9") break; /* unexpected char */
numDi gits = ch - '0";

if (nunDigits)

{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunDigits, 0);
result[count] =0; /* null terminate */
nunmBytes = atol (result);

}

if (nunBytes)
{
resul t Bytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seens to return up to 1457 bytes, on HP-UX 9.05 */
do {
int rcount;
rcount = recv(sock, result, (int)nunBytes, 0);
resul t Bytes += rcount;
resul t += rcount; /* Advance pointer */
} while (resultBytes < nunBytes);

/**

* For LAN dunps, there is always an extra trailing newine
* Since there is no EO line. For ASCII dunps this is
* great but for binary dunps, it is not needed.
***/
if (resultBytes == nunBytes)
{

char junk;

count = recv(sock, & unk, 1, 0);

}

el se

{

/* indefinite block ... dunp til we can an extra line feed */
do

{

Chapter 2 79

Programming Examples
LAN Programming Examples

if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 && *result == '\n") break;
resultBytes += strlen(result);

result += strlen(result);

} while (1);

}

}

el se

{
/* ASCI| response (not a binary block) */
*result = (char)ch;
if (recv_line(sock, result+1, naxLength-1) == NULL) return O;
/* REMOVE trailing newine, if present. And terminate string. */
resul tBytes = strlen(result);
if (result[resultBytes-1] == "'\n') resultBytes -= 1,
result[resultBytes] = '\0";

}

} while (0);

return resul tBytes;

/***
*

> $Function: showerrors$
*

* $Description: Query the SCPl error queue, until enpty. Print results. $

* $Return: (void)

LA R EEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEREEEEEEREEEREEREEEEEEEEEEEEEY]

voi d showEr ror s(SOCKET sock)

{
const char * conmand = "SYST: ERR?\ n";
char result_str[256];
do {
qguerylnstrunent (sock, command, result_str, sizeof(result_str)-1);
/**
* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0,"No error”
* Don't bother decoding.
**/
if (strncmp(result_str, "+0,", 3) == 0) {
/* Matched +0,"No error" */
80 Chapter 2

Programming Examples
LAN Programming Examples

br eak;

}

puts(result_str)
} while (1)

/***

*
>
*
*
*
*

*

$Function: isQuery$
$Description: Test current SCPI conmmand to see if it a query. $

$Return: (unsigned char) . . . non-zero if command is a query. O if not

LR EEEEEEEEREEEEEEREEY]

unsi gned char isQuery(char* cnd)

{

unsigned char q = 0
char *query

A EE AR R R EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEREEY]

/* if the command has a '?' in it, use querylnstrument. */

/* otherwi se, sinply send the conmand. */
/* Actually, we nust be a nore specific so that */

/* marker val ue querys are treated as commands. */
/* Exanpl e: SENS: FREQ CENT (CALC1l: MARK1: X?) */

A EEA R EEREEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEY]

if ((query = strchr(cmd,’”?")) !'= NULL)

/* Make sure we don’t have a narker val ue query, or
* any command with a '?" followed by a ')’ character
* This kind of conmand is not a query from our point of view
* The signal generator does the query internally, and uses the result

*/
query++ ; /* bunmp past '?" */
while (*query)
{
if (*query == ") /* attenpt to ignore white spc */
quer y++
el se break
}
if (*query !=")"")
{
q=1;
}
}
return q ;

Chapter 2 81

Programming Examples
LAN Programming Examples

B R RS SRR EEEEREEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

*
>
*

*

*
*

*

$Function: mai n$

$Description: Read command |ine argunents, and talk to signal generator.
Send query results to stdout. $

$Return: (int) . . . non-zero if an error occurs

LA E R EEEEEEEEREEEEEEAEEY]

int main(int argc, char *argv[])
{
SOCKET i nst Sock;
char *charBuf = (char *) mall oc(| NPUT_BUF_SI ZE) ;
char *basenane;
int chr;
char command[1024] ;
char *destination;
unsi gned char quiet = 0;
unsi gned char show errs = 0;
int nunber = O;
basenanme = strrchr(argv[0], '/");
i f (basenanme != NULL)
basenane++ ;
el se
basenane = argv[O0];
while ((chr = getopt(argc, argv, "qune")) != ECF)
switch (chr)
{
case 'q’': quiet = 1; break;
case 'n’': nunber = 1; break ;
case 'e’: show.errs = 1; break ;
case 'u
case '?': usage(basenane); exit(1) ;
}
/* now | ook for hostnane and optional <command>*/
if (optind < argc)
{
destination = argv[optind++] ;
strcpy(comand, "");
if (optind < argc)
while (optind < argc) {
/* <host name> <comrand> provi ded; only one comand string */
strcat (conmand, argv[optind++]);
82 Chapter 2

Programming Examples
LAN Programming Examples

if (optind < argc) {

strcat (command, " ");
} else {
strcat (command, "“\n");
}
}
}
el se
{
/*Only <hostname> provided; input on <stdin> */
strcpy(conmand, "");
if (optind > argc)
{
usage(basenan®) ;
exit(1l);
}
}
}
el se
{
/* no hostnane! */
usage(basenane) ;
exit(1l);
}

/**

/* open a socket connection to the instrunent

AR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

#i f def W NSOCK
if (init_winsock() !'=0) {
exit(1l);
}
#endi f /* WNSOCK */

i nst Sock = openSocket (destinati on, SCPl_PORT);

if (instSock == I NVALI D_SOCKET) ({
fprintf(stderr, "Unable to open socket.\n");
return 1,

/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(conmand) > 0)

{

/***

/* if the coomand has a '?' in it, use querylnstrument. */

/* otherw se, sinply send the command. */

/***/
if (isQuery(conmmand))

Chapter 2 83

Programming Examples
LAN Programming Examples

| ong buf Byt es;
buf Byt es = queryl nstrunent (i nst Sock, conmand,
char Buf, | NPUT_BUF_SI ZE) ;

if (lquiet)
{
fwrite(charBuf, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
commandl nstrunent (i nst Sock, command);
}
}
el se
{

/* read a line from<stdin> */
while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))
continue ;
if (*charBuf =="'# || *charBuf =="'1")
continue ;

strcat (charBuf, "\n");
if (lquiet)

if (nunber)
{
char nunf 10];
sprintf(num"%: ", nunber);
fwite(num strlen(num, 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout);

}

if (isQuery(charBuf))

{
| ong buf Byt es;

/* Put the query response into the same buffer as the*/
/* command string appended after the null terminator.*/

buf Byt es = queryl nstrunent (i nst Sock, charBuf,
charBuf + strlen(charBuf) + 1,

I NPUT_BUF_SI ZE -strlen(charBuf));

if (lquiet)

84

Chapter 2

Programming Examples
LAN Programming Examples

{
fwite(" ", 2, 1, stdout) ;
fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{

commandl nstrument (i nst Sock, charBuf);
if (nunber) nunber ++;

}

if (show_ errs) {
showErr or s(i nst Sock) ;
}

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_w nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

}

/* End of lanio.cpp *

AR R R R EEEEEEEEEEEEEEEEEREEEEEEEEEEREREEEEEEEEEEEEEEREEEEEEEEEEEEEY

/* $Function: mainl$ */
/* $Description: Qutput a series of SCPl commands to the signal generator */
/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */
/**/
/* Renane this int mainl() function to int main(). Re-conpile and the */
/* execute the program */

IR R E RS EEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEE R EEEEEEEY]

int mainl()

{

SOCKET i nst Sock;
| ong buf Byt es;
char *charBuf = (char *) nmalloc(!NPUT_BUF_SI ZE);

Chapter 2 85

Programming Examples
LAN Programming Examples

/***/

/* open a socket connection to the instrunment*/

IR E R EEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEEY

#i f def W NSOCK
if (init_winsock() !'=0) {
exit(1l);
}
#endi f /* W NSOCK */

i nst Sock = openSocket (" xxxxxx", SCPlI_PORT); /* Put your hostnanme here */

if (instSock == | NVALI D_SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1,

}

/* fprintf(stderr, "Socket opened.\n"); */

buf Byt es = queryl nstrunent (i nst Sock, "*IDN?\n", charBuf, |NPUT_BUF_SI ZE);
printf("ID: %\n", charBuf);

conmmandl nstrunent (i nst Sock, "FREQ 2.5 GHz\n");

printf("\n");

buf Byt es = queryl nstrument (i nst Sock, "FREQ CWP\n", charBuf, |NPUT_BUF_SI ZE);
printf("Frequency: %\n", charBuf);

conmmandl nstrunent (i nst Sock, "POWNWAWMPL -5 dBmin");

buf Byt es = querylnstrument (i nst Sock, "PON AMPL?\n", charBuf, |NPUT_BUF_SI ZE);
printf("Power Level: %\n", charBuf);

printf("\n");

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_w nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

}

IR R RS EEREEEEEEEEEEEEEEEEEEEEEEEEREREEEEEEEEE SRR EEEEEEEEEEEE R

get opt (30) get opt (30)

PROGRAM FI LE NAME: getopt.c
getopt - get option letter from argunment vector

SYNCPSI S
int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

86 Chapter 2

Programming Examples
LAN Programming Examples

PRORGAM DESCRI PTI ON:

getopt returns the next option letter in argv (starting fromargv[1])
that matches a letter in optstring. optstring is a string of

recogni zed option letters; if a letter is followed by a colon, the
option is expected to have an argument that nmay or nay not be
separated fromit by white space. optarg is set to point to the start
of the option argunent on return from getopt.

getopt places in optind the argv i ndex of the next argument to be
processed. The external variable optind is initialized to 1 before
the first call to the function getopt.

Wien all options have been processed (i.e., up to the first non-option
argunent), getopt returns EOF. The special option -- can be used to
delimt the end of the options; EOF is returned, and -- is skipped.

**********~k~k~k**/

#i ncl ude <stdio. h> /* For NULL, EOF */

#i ncl ude <string. h> /* For strchr() */

char *optarg; /* d obal argunent pointer. */

i nt optind = 0; /* d obal argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

char c;
char *posn;

optarg = NULL;

if (scan == NULL || *scan == "\0") {
if (optind == 0)
opti nd++;
if (optind >= argc || argv[optind][O] !="-" || argv[optind][1] == "\0")
return(ECF);
if (strcnp(argv[optind], "--")==0) {
opti nd++;

return(ECF);

scan = argv[optind] +1;
opti nd++;

}

C = *scan++;

Chapter 2 87

Programming Examples
LAN Programming Examples

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[0], c);
return(’ ?');

}
posn++;
if (*posn == ":") {
if (*scan '="\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
opti nd++;
}
}
return(c);

88

Chapter 2

Programming Examples
LAN Programming Examples

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface.
The signal generator power level is set to -5 dBm, queried for operation complete and then
queried for it's identify string. This example was developed using PERL version 5.6.0 and
requires a PERL version with the 10::Socket library.

1. In the code below, enter your signal generator’'s hostname in place of the xxxxx in the code

line: my $instrumentName= “Xxxxx";
Save the code using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the PSG Family Documentation CD-ROM as
perl.txt.

#!/ usr/ bin/ perl

PROGRAM NAME: perl . txt

Exanple of talking to the signal generator via SCPl-over-sockets
#

use | O : Socket;

Change to your instrument’s name

ny $instrument Name = " xxxxx";

Cet socket

$sock = new | O : Socket:: | NET (Peer Addr => $i nstrunent Nane,
PeerPort => 7777,
Proto => "tcp’,
)

die "Socket Could not be created, Reason: $!'\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Wait for conpletion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

ny $response = <$sock>;

chonp $response; # Renoves newl i ne fromresponse
if ($response ne "1")

{
}

die "Bad response to '*OPC?’ frominstrunent!\n";

Send identification query
print $sock "*IDN?\n";

Chapter 2 89

Programming Examples
LAN Programming Examples

$response = <$sock>;
chonp $response;
print "lInstrunment |ID: $response\n";

90 Chapter 2

Programming Examples
LAN Programming Examples

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator via sockets LAN. This
program requires Java version 1.1 or later be installed on your PC. To run the program
perform the following steps:

1. Inthe code example below, type in the hostname or IP address of your signal generator. For
example, String instrunment Name = (your signal generator’'s hostname).

2. Copy the program as Scpi SockTest . j ava and save it in a convenient directory on your
computer. For example save the file to the C: \ j dk1. 3. 0_2\ bi n\j avac directory.

3. Launch the Command Prompt program on your computer. Click Start > Programs >
Command Prompt.

4. Compile the program. At the command prompt type: j avac Scpi SockTest . j ava.
The directory path for the Java compiler must be specified. For example:
C:\>j dkl.3.0_2\bin\javac Scpi SockTest.java

Run the program by typing j ava Scpi SockTest at the command prompt.

6. Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the PSG Family Documentation CD-ROM as
javaex.txt.

//***‘k*‘k***********‘k‘k‘k******

/| PROGRAM NAME: | avaex.txt

/1 Sanmple java programto talk to the signal generator via SCPI-over-sockets
/1 This programrequires Java version 1.1 or |later.

// Save this code as Scpi SockTest.java

/1 Conpile by typing: javac Scpi SockTest.java

// Run by typing: java Scpi SockTest

/'l The signal generator is set for 1 GHz and queried for its id string
//~k~k~k~k~k~k~k~k**

i mport java.io.*;
i mport java.net.*;
cl ass Scpi SockTest

{
public static void main(String[] args)
{
String instrument Name = "XxxXxx"; /1 Put your hostname here
try
{

Socket t = new Socket (i nstrument Nane, 7777); // Connect to instrunent

Chapter 2 91

Programming Examples
LAN Programming Examples

/1 Setup read/wite mechani sm
Buf feredWiter out =
new BufferedWiter(
new Qut put StreamWiter(t.getQutputStrean()));
Buf f eredReader in =
new Buf f er edReader (
new | nput StreanReader (t. getlnputStrean()));
Systemout.println("Setting frequency to 1 GHz...");
out.wite("freq 1GHz\n"); /'l Sets frequency
out.flush();
Systemout.println("Waiting for source to settle...");
out.wite("*opc?\n"); /1 Waits for conpletion
out. flush();
String opcResponse = in.readLine();
if (!opcResponse.equals("1"))
{
Systemerr.println("lnvalid response to '*OPC?'!");
Systemexit(1l);

}

Systemout.println("Retrieving instrunent ID...");

out.wite("*idn?\n"); /1 Querys the id string

out. flush();

String i dnResponse = in.readLine(); /!l Reads the id string
/1 Prints the id string

Systemout.printlin("Instrument ID: " + idnResponse);

}

catch (1 OException e)

{

Systemout.println("Error" + e);

92 Chapter 2

Programming Examples
RS-232 Programming Examples

RS-232 Programming Examples

= “Interface Check Using Agilent BASIC” on page 94
= ‘“Interface Check Using VISA and C” on page 95

= “Queries Using Agilent BASIC” on page 97

= “Queries Using VISA and C” on page 98

Before Using the Examples

On the signal generator select the following settings:
< Baud Rate - 9600 must match computer’s baud rate
= Transmit Pace - None

* Receive Pace - None

« RTS/CTS - None

e RS-232 Echo - Off

Chapter 2

93

Programming Examples
RS-232 Programming Examples

Interface Check Using Agilent BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command * RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used
is COML1 (Serial A on some computers). Refer to “Using RS-232” on page 26 for more
information.

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset...." message on
the front panel display. If there is no indication, check that the RS-232 cable is properly
connected to the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the
program was typed incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run
the program. Refer to “If You Have Problems” on page 8 for more help.

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex1.txt.

10 R R R R R R R]

20
30
40
50
60
70
80
90
100
110
120
130
140
150
160 I NTEGER Num

170 CONTROL 9,0;1

180 CONTROL 9, 3; 9600
190 STATUS 9, 4; St at
200 NunmeBI NAND(St at , 7)
210 CONTROL 9, 4; Num
220 QUTPUT 9; " *RST"
230 END

PROGRAM NAME: rs232ex1. t xt

PROGRAM DESCRI PTION: This programverifies that the RS-232 connections and
interface are functional.

Connect the UNI X workstation to the signal generator using an RS-232 cable

Run Agilent BASIC, type in the follow ng commands and then RUN the program

!
|
|
!
|
|
!
|
|
|
|
|
IR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEESEREEEREEREEEREEREEEEEEEEEEESEEREREREEREERESESREEEEERSES
|

Resets the RS-232 interface

Sets the baud rate to match the sig gen
Reads the value of register 4

Gets the AND val ue

Sets parity to NONE

Qutputs reset to the sig gen

End the program

94 Chapter 2

Programming Examples
RS-232 Programming Examples

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The
program verifies that the RS-232 connections and interface are functional. In this example
the COM2 port is used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’
depending on the computer serial port you are using. Launch Microsoft Visual C++, add the
required files, and enter the following code into the .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex1.cpp.

AR EEEEE SRR EEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

/| PROGRAM NAME: rs232ex1. cpp

/1

/| PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to
/1 control the signal generator

/1

/1 Connect the conputer to the signal generator using an RS-232 serial cable
/1 The user is asked to set the signal generator for a 0 dBm power |eve

/1 A reset command *RST is sent to the signal generator via the RS-232

/Il interface and the power level will reset to the -135 dBm | evel. The default
// attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used

/1 These attributes can be changed using VI SA functions.

11

// 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[KRR Kk kK ok ok ok kK Kk ok o Kk K K ko kR K R ok kR Rk ko kR Rk ok kR Rk ok kR R kR R Rk ok R R R ok R R R R ok ok kR Rk ok kK

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{
int baud=9600; /] Set baud rate to 9600
printf("Manually set the signal generator power level to O dBmn");
printf("\n");
printf("Press any key to continue\n")
getch();
printf("\n");
Vi Sessi on defaultRM vi; /1 Declares a variable of type Vi Session

// for instrument comunication on COM 2 port
Vi Status vi Status = O;
/'l Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "ASRL2::|NSTR', VI_NULL, VI_NULL, &vi);

Chapter 2 95

Programming Examples
RS-232 Programming Examples

i f(viStatus){ /1 1f operation fails, pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 initialize device
vi St at us=vi Enabl eEvent (vi, VI _EVENT_I O COWLETI ON, VI _QUEUE, VI _NULL);

viClear(vi); /'l Sends device clear conmand

/] Set attributes for the session
vi Set Attribute(vi,VI_ATTR_ASRL_BAUD, baud) ;
vi Set Attribute(vi,VI_ATTR ASRL_DATA BI TS, 8);

viPrintf(vi, "*RST\n"); /] Resets the signal generator
printf("The signal generator has been reset\n");
printf("Power |evel should be -135 dBmn");

printf("\n"); /1 Prints new line character to the display
vi Cl ose(vi); /1 Closes session
vi Cl ose(defaul tRM ; /1 Cl oses default session

96 Chapter 2

Programming Examples
RS-232 Programming Examples

Queries Using Agilent BASIC

This example program demonstrates signal generator query commands over RS-232. Query
commands are of the type *| DN? and are identified by the question mark that follows the
mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex2.txt.

10 R R R R R R R R R

20

30

40

50

60

70

80

90

100

110

120 I NTEGER Num

130 DI M Str$[200], Stri1$[20]

140 CONTROL 9,0;1 !

150 CONTROL 9, 3; 9600 !

160 STATUS 9, 4; St at !

170 NunmeBI NAND(St at , 7) !

180 CONTROL 9, 4; Num ! Sets the parity to NONE

190 OUTPUT 9; "*| DN?" I Querys the sig gen ID

200 ENTER 9; Str$ | Reads the ID
|
|
]
|
|
]
|

PROGRAM NAME: rs232ex2. t xt

PROGRAM DESCRI PTION: I n this exanple, query conmands are used to read
data fromthe signal generator.

Start Agilent BASIC, type in the followi ng code and then RUN t he program

!
|
|
!
|
|
!
|
IEEEE R SRR RS E S S SRR R EEEEEEEEEEEEEEEEEEREEEEEEEEEREEREREEREEREEEEEEEEEEEEEEEERERESREESEESSESSS
|

Resets the RS-232 interface

Sets the baud rate to match signal generator rate
Reads the val ue of register 4

Gets the AND val ue

210 VAIT 2 Waits 2 seconds

220 PRINT "ID =", Str$ Prints ID to the screen

230 QUTPUT 9; "POW AMPL -5 dbnt Sets the the power level to -5 dbm
240 OUTPUT 9; " POWP" Querys the power |evel of the sig gen
250 ENTER 9; Str1$ Reads the queried val ue

260 PRI NT "Power = ",Stri1$ Prints the power level to the screen
270 END End the program

Chapter 2 97

Programming Examples
RS-232 Programming Examples

Queries Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The
program verifies that the RS-232 connections and interface are functional. Launch Microsoft
Visual C++, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex2.cpp.

IR R RS E RS EEEREEEEEEEEEEEEEREEEEEEREEEEEEREEEEEEEEEEEEEEEREEEEEEEEEEEEEEERE

/1

/| PROGRAM NAME: rs232ex2. cpp

/1

// PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to contro
/'l the signal generator

/1

/1 Connect the conputer to the signal generator using the RS-232 serial cable

/1 and enter the following code into the project .cpp source file.

/1 The program queries the signal generator ID string and sets and queries the power

/1 level. Query results are printed to the screen. The default attributes e.g. 9600 baud
/1l parity, 8 data bits,1 stop bit are used. These attributes can be changed usi ng VI SA
/1 functions.

/1

/1 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

VRS R R R R EEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEE]

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>

#defi ne MAX_COUNT 200

int main (void)

{
Vi St at us st at us; /'l Declares a type Vi Status variable
Vi Sessi on defaul tRM instr;// Declares type Vi Session variabl es
Vi Ul nt 32 ret Count ; // Return count for string I/O
Vi Char buf fer[MAX_COUNT] ;// Buffer for string I/0O

status = vi OpenDefaul t RM &defaultRM;// Initializes the system
/1 Open communication with Serial Port 2
status = vi Open(defaultRM "ASRL2::|NSTR', VI_NULL, VI_NULL, & nstr);

i f(status){ /1 1f problens, then pronpt user
printf("Could not open Vi Session!\n")
printf("Check instrunents and connections\n");

98 Chapter 2

(Vi Buf)" *1 DN?\ n",

(Vi Buf)" PON AMPL - 5dbm n*,

Programming Examples
RS-232 Programming Examples

Set timeout for 5 seconds

Asks for sig gen ID string
6, &retCount);

Reads the sig gen response
MAX_COUNT, &ret Count);

I ndicates the end of the string

/1 Prints header for ID

Prints the ID string to the screen
Prints carriage return

Fl ush the read buffer

Sets sig gen power to -5dbm

15, &retCount);
Querys the sig gen for power |evel

(Vi Buf)" POMP\ n", 5, & et Count) ;

Read t he power |evel

MAX_COUNT, &ret Count);
Indicates the end of the string
Prints header to the screen
Prints the queried power |evel

printf("\n");
exit(0);}

11
vi Set Attribute(instr, VI_ATTR TMO VALUE, 5000);

/1
status = viWite(instr,

/1
status = vi Read(instr, (ViBuf)buffer,
buffer[retCount]= "\0"; 11
printf("Signal Generator ID ");
printf(buffer); 11
printf("\n"); 11

1

/1
status = viWite(instr,

11
status = viWite(instr,

/1
status = vi Read(instr, (ViBuf)buffer,
buffer[retCount]= "\0"; 11
printf("Power level ="); 11
printf(buffer); 11
printf("\n");
status = viC ose(instr); 11

status = vi C ose(defaul tRM;
return O;

Cl ose down the system

Chapter 2

99

Programming Examples
RS-232 Programming Examples

100 Chapter 2

3 Programming the
Status Register System

101

Programming the Status Register System
Overview

Overview

During remote operation, it is important to monitor the status of the signal generator. In most
applications, it is sufficient to use the :SYSTem:ERRor? query (Refer to “:ERRor[:NEXT]” on
page 208) to see if any errors have been posted in the signal generator's error queue.

The status register system, described in this chapter, is an alternative method to monitor the
status of the signal generator. The status register system is more complex than the simple
:SYSTem:ERROR? query, but does provide two major advantages:

= You can monitor the settling of the signal generator using the Settling Bit of the Operation
Status Group.

= You can use the SRQ interrupt technique to avoid status polling, which may give you a
speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data
structures for reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-priority status registers propagate their data to the
higher-priority registers in the data structures by means of summary bits. The Status Byte
Register is at the top of the hierarchy and contains the general status information for the
signal generator’s events and conditions. All other individual registers are used to determine
the specific events or conditions.

Figure 3-1 shows the signal generator’s status registers and their hierarchy.

IEEE 488.2 common commands (those beginning with *) access the higher-level summary
registers. To access the information from specific registers, use the STATus commands.

102 Chapter 3

Figure 3-1

Data Questionable Power Status Group

Unused -

Unleveled —

Unused

Low Band Detector Fault -

Unused -
Unused -
Unused -
Unused -
Unused -
Unused o
Unused o
Unused -
Unused -
Unused -

[¢)

1

2

3

Unused~ 4
5

5]

7

8

9

10

11

12

13

14

Always Zero (0)15

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register

Event Enable Reg.

Data Quest. Frequency Status Group

Synth. Unlocked o

10 MHz Ref Unlocked
1 GHz Ref Unlocked
Unused

Unused <

Sampler Loop Unlocked -
YO Loop Unlocked <
Unused H

Unused =

Unused —

Unused H

Unused

Unused -

Unused o

Unused o

Always Zero (0) o

Data Quest. Modulation Status Group

Mod 1 Undermod —

Mod 1 Overmod —

Mod 2 Undermod —

Mod 2 Overmod —

Unused o

Pulse Generator Unlocked —
Internal Modulation Source Unlocked —
Unused -

Unused -

Unused o

Unused 4

Unused -

Unused —

Unused -

Unused <

Always Zero (0) o

Data Quest. Cali
DCFM/DCTM

Zero Failure =

nused -

Unused 4

Unused o

Unused -

Unused -

Data Questionable
Status Group

Unused —
Unused —
Unused —

(summary)—

Temperature _]
(Oven Cold)

(summary)—
Unused —

0

1

2

3

s\ |& |2

sN\\[21Z[2[5 2

6 QL |iL |m|2
o 2=

7 AHEMEEG
=1k .

8 B B e b=
Sl==| o =

9 HB oG

11

12

13

14

15

)
1

2

2 sl |, |13

4 G|5|s|z]e

SR\ \HHHEE

6 fﬂmmwﬁ@_
7 5l5|5[S|s

8 = RHEE

o HE B

10 3 o

11

12

13

14

L15]

bration Status Group

0

1

2

3 K =

4 HEEEE

5 gEEﬁm

W |w D=

6 =y |o]| 2]

7 AEEEE
oo |m|

8 = ==l Y

9 HRSEE
2|¥|5
SIS | |w|®
o it

V] d
Unused
Unused -
Unused
Unused
Unused 10
Unused 911
Unused <12
Unused =113
Unused 114
Always Zero (0) 915

(summary)=—

(summary)—

Selftest=] ©
10

Unused —
Unused — 11
Unused —
Unused —
Unused —
Always Zero (0)—

Oper. Complete
Req. Bus Control
Query Error
Dev. Dep. Error
Execution Error
Command Error
User Request
Power On

Standard Operation Status Group

Unused —
Settling —
Unused —
Sweeping —
Unused <
Waiting for _|

Triger
Unused —

Unused —
Unused <
DCFM/DCTM _|

Nullin Progress
Unused —

Sweep Calculating —
Unused —
Unused —
Unused —

® N oo RN = O

12
13
14
15

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
Standard Event Status Group :
1
1
1
1
1
1
1
1
1
1
1
1
l
I
I
I
I
I
I
I
I
I

Programming the

The Overall Status Byte Register System

Status Register System
Overview

Status Byte Register

Unused

Unused

Error/Event Queue Summary Bit

Data Questionable Status Summary Bit
Message Available (MAV)

Std. Event Status éum. Bit
Req. Serv. Sum. Bit (RQS)
Std. Operation Status é)

[- -

m. Bit

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register

Event Enable Reg.

Event Register
Event Enable Reg.

® N oR N = O

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

©
Condition Register

10
11
12
13
14

Always Zero (0)—

15

)

—

y ¢

&
[
|7|6|5|4|3|2|1|0|

Service Request
Enable Register

ce92a

Chapter 3

103

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a numerical value based on its location (see Table 3-1).

= To enable a particular bit, send its value with the command.
= To enable more than one bit, send the sum of all the bits that you are interested in.
= A query returns the sum of all bits that are true.

Example: Enable Bit 0 and Bit 6 of *ESE

1. Add the value of bit 0 (1) and the value of bit 6 (64).
2. Send the sum with the command: * ESE 65.

Example: STATus:OPERation:CONDition? Command Returns Decimal Value of 140
140=128+8+4

In this case bit 7 is true, bit 3 is true, and bit 2 is true.

Table 3-1 Status Register Bit Decimal Values
Decimal |2 |® |2 (|8 |3 [8 |B|Q|3[“°|®
© © [ce} < N —
Value s |-
<
Bit Number | 15 |14 |13 |12 |11 |10 |9 |8 |7 |6 |54 |3 |2|1|0

NOTE Bit 15 is not used to report status and is therefore set to zero.

104 Chapter 3

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition.
2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.

Determining What to Monitor
You can monitor the following:

= current signal generator hardware and firmware status
= whether a particular condition (bit) has occurred
= when a particular condition (bit) changes

Monitoring Current Signal Generator Hardware and Firmware Status

You can query the condition registers, which continuously monitor status. These registers
represent the current state of the signal generator. Bits in a condition register are updated in
real time. When the condition monitored by a particular bit becomes true, the bit sets to 1.
When the condition becomes false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

Once you enable a bit with the event enable register, the signal generator monitors that
particular bit. If the bit becomes true in the event register, it stays set until the event register
is cleared. Querying the event register enables you to detect that this condition occurred even
if the condition no longer exists. The event register can be cleared only by querying it or
sending the *CLS command, which clears all event registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The
transition registers are preset to register positive transitions (a change going from 0 to 1).
This can be changed so the selected bit is detected if it goes from true to false (negative
transition), or if either transition occurs.

Chapter 3 105

Programming the Status Register System
Accessing Status Register Information

Deciding How to Monitor

You can use either of two methods to programmatically access the information in status
registers (either method allows you to monitor one or more conditions).

The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is
accomplished by a program loop that continually sends a query.

The polling method works well if you do not need to know about changes the moment they
occur. Use polling on the following occasions:

— when you use a programming language/development environment or 1/O interface that
does not support SRQ interrupts

— when you want to write a simple, single-purpose program and don’'t want the added
complexity of setting up an SRQ handler

The service request (SRQ) method

In the SRQ method (described in detail on page 107), the signal generator takes a more
active role. It tells the controller when there has been a condition change without the
controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a
change using the polling method, the program must repeatedly read the registers.) Use the
SRQ method on the following occasions:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can't afford the performance penalty inherent to polling

106 Chapter 3

Programming the Status Register System
Accessing Status Register Information

Using the Service Request (SRQ) Method

The programming language, 1/0 interface, and programming environment must support SRQ
interrupts (example: BASIC used with GPIB.) Using this method, you must do the following:

1. determine which bit monitors the condition
2. determine how that bit reports to the request service (RQS) bit of the status byte

3. send commands to enable the bit that monitors the condition and to enable the summary
bits that report the condition to the RQS bit

4. enable the controller to respond to service requests

When the condition changes, the signal generator sets its RQS bit and asserts an SRQ. The
controller is informed of the change as soon as it occurs. As a result, the time the controller
would otherwise have used to monitor the condition can be used to perform other tasks. The
program determines how the controller responds to the SRQ.

Generating a Service Request To use the SRQ method, you must understand how service
requests are generated. The *SRE command sets the bits in the Service Request Enable
Register, except bit 6 which is ignored. This enables the corresponding summary message bits
in the Status Byte Register to set high (from 0 to 1) when there is a change in instrument
status. When a Status Byte Register bit is set high, it will enable the setting (0 to 1) of the
request service (RQS) bit (bit 6). Refer to Figure 3-1 on page 103 for a visual representation of
this process.

This process is only initiated if both of the following conditions are true:
= The corresponding bit of the Service Request Enable Register is also set to 1.
= The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator's SRQ
process is initiated and the time the controller reads the status byte register.

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a
time can set the RQS bit. All bits that are asserting an SRQ will be read as part
of the status byte when queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte's RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ
only informs the controller that some device on the bus requires service. Setting the RQS bit
allows the controller to determine which signal generator requires service.

Chapter 3 107

Programming the Status Register System
Accessing Status Register Information

If a program enables the controller to detect and respond to service requests, it should
instruct the controller to perform a serial poll when SRQ is true. Each device on the bus
returns the contents of its status byte register in response to this poll. The device whose RQS
bit is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll,
the RQS bit is reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-measurement and the
measurement is in continuous mode, then restarting a measurement (INIT
command) can cause the measuring bit to pulse low. This causes an SRQ when
you have not actually reached the “end-of-measurement” condition. To avoid
this, do the following:

1. Send the command | NI Ti at e: GONTi nuous CFF.
2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level, using the IEEE
488.2 common commands listed below. You can set and query individual status registers using
the commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and
clearing all the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable
Register which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register
which is part of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets the Standard Event Status Register to zero so it
can monitor the completion of all commands. The query stops any new commands from
being processed until the current processing is complete, then returns a ‘1'.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service
Request Enable Register, the Standard Event Status Enable Register, and device-specific
event enable registers at power on. The query returns the flag setting from the *PSC
command.

108 Chapter 3

Programming the Status Register System
Accessing Status Register Information

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request
Enable Register.

*STB? (status byte) queries the value of the status byte register without erasing its
contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and
error/event queue enable registers. (Refer to Table 3-2.)

Table 3-2 Effects of :STATus:PRESet
Register Value after
:STATus:PRESet

:STATus:OPERation:ENABIe 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIe 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABIe 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIe 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABIe 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABIe 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767

Chapter 3 109

Programming the Status Register System
Status Byte Group

Status Byte Group

The Status Byte Group includes the Status Byte Register and the Service Request Enable
Register.

Status Byte Register
0 | Unused
1 | Unused
2 | Error/Event Queue Summary Bit
3 | Data Questionable Summary Bit
4 | Message Available (MAV)
5 | Standard Event Summary Bit
rposmmsses #| B | Request Service (RQS)
i 7 | Operation Status Summary Bit
)
!
o o e e o e o o o o o e o - - - - - - - - - - 9
1
Y i
1
® |
F® |
1
£ =
¢
 ®
A ®
oy
&
T
011]2|3]4|5]|6] 7] Service Request Enable Register

ck721a

110 Chapter 3

Programming the Status Register System
Status Byte Group

Status Byte Register
Table 3-3 Status Byte Register Bits

Bit

Description

0,1

Unused. These bits are always set to 0.

2

Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error
queue is not empty. The SCPI error queue contains at least one error message.

Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data
Questionable summary bit has been set. The Data Questionable Event Register can then be
read to determine the specific condition that caused this bit to be set.

Message Available. A 1 in this bit position indicates that the signal generator has data ready
in the output queue. There are no lower status groups that provide input to this bit.

Standard Event Status Summery Bit. A 1 in this bit position indicates that the Standard
Event summary bit has been set. The Standard Event Status Register can then be read to
determine the specific event that caused this bit to be set.

Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal
generator has at least one reason to require service. This bit is also called the Master Summary
Status bit (MSS). The individual bits in the Status Byte are individually ANDed with their
corresponding service request enable register, then each individual bit value is ORed and input
to this bit.

Standard Operation Status Summary Bit. A 1 in this bit position indicates that the
Standard Operation summary bit has been set. The Standard Operation Event Register can
then be read to determine the specific condition that caused this bit to be set.

Query: *STB?

Response: The decimal sum of the bits set to 1 including the MSS bit.

Example: The decimal value 136 is returned when the MSS bit is set low (0).
Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum =128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Chapter 3 111

Programming the Status Register System
Status Byte Group

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register
triggers a service request

*SRE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable except
bit 6. Bit 6 cannot be enabled.

Example: Enable bits 7 and 5 to trigger a service request when either corresponding
status group register summary bit sets to 1. Send the command * SRE 160
(128 + 32).

Query: * SRE?

Response: The decimal value of the sum of the bits previously enabled with the

*SRE <dat a> command.

112 Chapter 3

Programming the Status Register System
Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group each consist
of the following registers; the Standard Event Status Group is similar but does not have
negative or positive transition filters.

Condition

Register A condition register continuously monitors the hardware and firmware
status of the signal generator. There is no latching or buffering for a
condition register; it is updated in real time.

Negative

Transition

Filter A negative transition filter specifies the bits in the condition register that
will set corresponding bits in the event register when the condition bit
changes from 1 to 0.

Positive

Transition

Filter A positive transition filter specifies the bits in the condition register that
will set corresponding bits in the event register when the condition bit
changes from 0 to 1.

Event

Register An event register latches transition events from the condition register as
specified by the positive and negative transition filters. Bits in the event
register are latched, and once set, they remain set until cleared by either
qguerying the register contents or sending the * (LS command.

Event

Enable

Register An enable register specifies the bits in the event register that can generate a

summary bit. The signal generator logically ANDs corresponding bits in the
event and enable registers and ORs all the resulting bits to produce a
summary bit. Summary bits are, in turn, used by the Status Byte Register.

In general, a status group is a set of related registers whose contents are programmed to
produce status summary bits. In each status group, corresponding bits in the condition
register are filtered by the negative and positive transition filters and stored in the event
register. The contents of the event register are logically ANDed with the contents of the
enable register and the result is logically ORed to produce a status summary bit in the Status

Chapter 3 113

Programming the Status Register System
Status Groups

Byte Register.

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the
Status Byte Register. This group consists of the Standard Event Status Register (an event
register) and the Standard Event Status Enable Register.

Operation Complete

Request Bus Control

Query Error

Device Dependent Error

Execution Error
Command Error

User Request
Power On j

Event Register 7 6 5

R —
w <
N
— |
-

(@)

&
A
&
Event
Enable Register 7 6 5 4 3 210
vy To Status Byte Register Bit #5 ok723

114 Chapter 3

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 3-4 Standard Event Status Register Bits
Bit | Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator
operations were completed following execution of the * OPC command.

1 Request Control. This bit is always set to 0. (The signal generator does not request control.)

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors
have SCPI error numbers from -499 to —400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has
occurred. Device dependent errors have SCPI error numbers from —399 to —300 and 1 to 32767.

4 Execution Error. A 1 in this bit position indicates that an execution error has occurred.
Execution errors have SCPI error numbers from -299 to —200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred.
Command errors have SCPI error numbers from —199 to —100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been
pressed. This is true even if the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and

then on.

Query: *ESR?
Response: The decimal sum of the bits set to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Chapter 3 115

Programming the Status Register System
Status Groups

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event
Status Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 7 and bit 6 so that whenever either of those bits is set to 1, the
Standard Event Status summary bit of the Status Byte Register is set to 1.
Send the command *ESE 192 (128 + 64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the
*ESE <dat a> command.

116 Chapter 3

Standard Operation Status Group

Programming the Status Register System
Status Groups

The Standard Operation Status Group is used to determine the specific event that set bit 7 in
the Status Byte Register. This group consists of the Standard Operation Condition Register,
the Standard Operation Transition Filters (negative and positive), the Standard Operation
Event Register, and the Standard Operation Event Enable Register.

@

Unused

Settling
Unused

Sweeping

Unused

Waiting for Trigger

Unused

Unused

Unused
DCFM/DC$M Null in Progress
Unused

Sweep Calculating
Unused

Unused
Unused
Always Zero (0) ——

Y Y Y Y VY YYYYVYYVYVYYYY
e Roration |15 14 13 12 1110 987 6 5 4 3 2 1 0|
. Y VYV Y YYYVYYYVYYYY

Standard O t

_Prfs;?g;/}roﬁ::j'on 1514 13 2 1110987 654321 0|
Standard Operation + + + + + + + + + + + + + +
Negative -~ |15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o|
Standard Operation + + + + + + + + + + + + +
Event Hegister [1514 13 2 1110987 654 3 2 1 0|

& n Y
&
&
& \? Y
&
/k x Y
\&r" Y
“‘@gé‘
F&

Standard O ti

Event . oo 15 14 13 12 11 10 9 8 7 6 5 4 8 2 1 0|

Enable Register

¥ To Status Byte Register Bit #7

ce93a

Chapter 3

117

Programming the Status Register System

Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits
Bit Description
0 Unused. This bit is always set to 0.
1 Settling. A 1 in this bit position indicates that the signal generator is settling.
2 Unused. These bits are always set to 0.
3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.
4 Unused. This bit is always set to 0.
5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for
trigger” state of the trigger model.
6,7,8 Unused. These bits are always set to 0.
9 DCFM/DC@M Null in Progress. A 1 in this bit position indicates that the signal
generator is currently performing a DCFM/DC®M zero calibration.
10 Unused. This bit is always set to 0.
11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is
currently doing the necessary pre-sweep calculations.
12,13, 14, Unused. These bits are always set to 0.
15 Always 0.
Query: STATus: CPERat i on: CONDi ti on?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum =512 (bit 9) + 8 (bit 3).

118

Chapter 3

Programming the Status Register System
Status Groups

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Commands: STATus: CPERat i on: NTRansi ti on <val ue> (negative), or
STATus: OPERat i on: PTRansi ti on <val ue> (positive), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: CPERat i on: NTRansi ti on?
STATus: CPERat i on: PTRansi ti on?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read only. Reading data
from an event register clears the content of that register.

Query: STATus: CPERat i on[: EVENt] ?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard
Operation Event Register set the summary bit (bit 7 of the Status Byte Register) to 1

Command: STATus: CPERat i on: ENABl e <val ue>, where
<val ue> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the
Standard Operation Status summary bit of the Status Byte Register is set to 1.
Send the command STAT: OPER: ENAB 520 (512 + 8).

Query: STATus: CPERat i on: ENABl e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: OPERat i on: ENABI e <val ue>command.

Chapter 3 119

Programming the Status Register System
Status Groups

Data Questionable Status Group

The Data Questionable Status Group is used to determine the specific event that set bit 3 in
the Status Byte Register. This group consists of the Data Questionable Condition Register,
the Data Questionable Transition Filters (negative and positive), the Data Questionable
Event Register, and the Data Questionable Event Enable Register.

Unused
Unused
Unused
Power (summary)
Temperature (Oven Cold)
Frequency (summary)

Unused
Modulation (summary)
Calibration (summary)

Selftest

Unused

Unused

Unused

Unused

Unused —m—
Always Zero (0)

_ _l Y ¥ ¥V Y YYYYYVYVYV VY
gﬁ,;ad%ggs;;ggﬁgg | 1514 13 12 1110 9 8 7 6 5 4 3 2 1 o|
Data Questionable + + + + + + + + + + + + + +
Positive " |15141312 11 109876543210|
ransition Filter

_ I EEEEEEEEEEEEEER!
Ezgaa%fees:nable| 51413 12 111098 7 654 3 2 1 0|
ransition rilter

Y VY Y YYYVYYVYYYVY
Data Questionable |15 14 13 12 1110 9 8 7 6 54 3 2 1 0|
2oL
&
(& %
&
& &
@ i)
Y
Y e r!)(‘;)\‘é
'O
Data Questionable T
BVt Fegister 151413 2 1110087654321 0]
¥ To Status Byte Register Bit #3

ce94a

120 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only:.

Table 3-6

Data Questionable Condition Register Bits

Bit

Description

0,12

Unused. These bits are always set to O.

3

Power (summary). This is a summary bit taken from the QUEStionable:POWer
register. A 1 in this bit position indicates that one of the following may have happened:
The ALC (Automatic Leveling Control) is unable to maintain a leveled RF output power
(i.e., ALC is UNLEVELED), or the reverse power protection circuit has been tripped.

Temperature (OVEN COLD). A 1 in this bit position indicates that the internal
reference oscillator (reference oven) is cold.

Frequency (summary). This is a summary bit taken from the
QUEStionable:FREQuency register. A 1 in this bit position indicates that one of the
following may have happened: synthesizer PLL unlocked, 10 MHz reference VCO PLL
unlocked, heterodyned VCO PLL unlocked, sampler, or YO loop unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 127.

Unused. This bit is always set to 0.

Modulation (summary). This is a summary bit taken from the
QUEStionable:MODulation register. A 1 in this bit position indicates that one of the
following may have happened: modulation source 1 underrange, modulation source 1
overrange, modulation source 2 underrange, modulation source 2 overrange, or
modulation uncalibrated. See the Data Questionable Modulation Status Group for more
information.

Calibration (summary). This is a summary bit taken from the
QUEStionable:CAL.ibration register. A 1 in this bit position indicates that one of the
following may have happened: an error has occurred in the DCFM/DC®M zero
calibration or an error has occurred in the 1/Q calibration. See the Data Questionable
Calibration Status Group for more information.

Self Test. A 1 in this bit position indicates that a self-test has failed during power-up.
This bit can only be cleared by cycling the signal generator’s line power. *CLS will not
clear this bit.

10, 11,
12,13, 14

Unused. These bits are always set to O.

15

Always 0.

Chapter 3

121

Programming the Status Register System
Status Groups

Query: STATus: QUESt i onabl e: CONDi ti on?
Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum =512 (bit 9) + 8 (bit 3).

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Commands: STATus: QUESti onabl e: NTRansi ti on <val ue> (negative), or
STATus: QUESt i onabl e: PTRansi ti on <val ue> (positive), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESt i onabl e: PTRansi ti on?

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified
by the transition filters. Event registers are destructive read-only. Reading data from an event register
clears the content of that register.

Query: STATus: QUESti onabl e[: EVENt] ?

122 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus: QUESti onabl e: ENABl e <val ue> command where <val ue> is the sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Status summary bit of the Status Byte Register is set to 1. Send the
command STAT: QUES: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: ENABI e <val ue> command.

Chapter 3 123

Programming the Status Register System

Status Groups

Data Questionable Power Status Group

The Data Questionable Power Status Group is used to determine the specific event that set bit
3 in the Data Questionable Condition Register. This group consists of the Data Questionable
Power Condition Register, the Data Questionable Power Transition Filters (negative and
positive), the Data Questionable Power Event Register, and the Data Questionable Power

Event Enable Register.

@

Unused

Unleveled

Unused

Low Band Detector Fault

Unused
Unused

Unused

Unused

Unused

Unused

Unused
Unused

Unused

Unused
Unused
Always Zero (0)

Power

Power
Positive

Power
Negative

Power

1

Power
Event
Enable Register

Data Questionable 4 A 4 YYYVYYVYYYYY
Condition Register 15 14 12 10 9 8 7 6 5 4 3 2 1 0|
Data Questionable + + + + + + + + + + + + +
4 ve o |1514 12 109876543210|
ransition Filter
. I EEEEEEEEEEEEREER
Power - onarte 15141312 1110087654321 0]
Transition Filter + + + + + + + + + + + + + +
Pawer 1o 145 14 13 12 1110 987 65 4 3 2 1 0|
Event Register
) (g
&
0
£ f‘& Y
Olop!
Data Questionable f
15 14 183 12 11 10 9 543210|

I To Data Questionable Status Group Bit #3

ce95a

124

Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Table 3-7 Data Questionable Power Condition Register Bits

Bit | Description

0 Unused. This bit is always set to 0.

1 Unleveled. A 1 in this bit indicates that the output leveling loop is unable to set the output
power.

2 Unused. This bit is always set to 0.

3 Low Band Detector Fault. A 1 in this bit indicates that the low band coupler detector fault
has caused an error in the power level below 2 GHz.

4-14 | Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: POAér: GONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Commands: STATus: QUESt i onabl e: POMr : NTRansi ti on <val ue> (negative), or
STATus: QUESt i onabl e: POMr: PTRansi ti on <val ue> (positive), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: POAér : NTRansi ti on?
STATus: QUESt i onabl e: POAér : PTRansi ti on?

Chapter 3 125

Programming the Status Register System
Status Groups

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition
register as specified by the transition filters. Event registers are destructive read-only.
Reading data from an event register clears the content of that register.

Query: STATus: QUESti onabl e: PONer[: EVEN] ?

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable
Condition Register) to 1.

Command: STATus: QUESt i onabl e: PO/Mr : ENABl e <val ue>command where <val ue> is the
sum of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Power summary bit of the Data Questionable Condition Register is
set to 1. Send the command STAT: QUES: PON ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: PONér : ENABl e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: PONer : ENABI e <val ue>command.

126 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

The Data Questionable Frequency Status Group is used to determine the specific event that
set bit 5 in the Data Questionable Condition Register. This group consists of the Data
Questionable Frequency Condition Register, the Data Questionable Frequency Transition
Filters (negative and positive), the Data Questionable Frequency Event Register, and the

Data Questionable Frequency Event Enable Register.

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked

Unused
Unused
Sampler Loop Unlocked
YO Loop Unlocked
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused —mM8M ——
Always Zero (0)

EataQuestionable 1 Yy ¥V V V VXY
requenc

Cor?ditionyRegister 15 14 13 12 11 10

Data Questionable + + + + + +

F
Postive [15 14 13 12 11 10
Transition Filter

Data Questionable + + +

Frequency [15 14 13 12 11 10
Negative

Transition Filter + + +

pata Questionable |15 14 13 12 11 10

Event Register

-
-l
-
Bl
-
-l
-
-
-«
-

S Iy PV N

-
|
-

<_

|

—]
© 4| © (@4 © @ ©
© g © (g © |4 @ |«
N N e N e N
o 4O 4O A+ o
Ol 4 O @ O @ O
I R N S = Ny
W] W] W W
(Sl IV I D N
- e
O[] o oo

&
&
&

&

<
&

‘%
>)t
O

- __..(EE>
= et

Data Questionable
Frequency

Event . 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Enable Register

Y To Data Questionable Status Group Bit #5

ce96a

Chapter 3 127

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware
and firmware status of the signal generator. Condition registers are read-only.

Table 3-8 Data Questionable Frequency Condition Register Bits
Bit | Description
0 Synthesizer Unlocked. A 1 in this bit indicates that the synthesizer is unlocked.
1 10 MHz Reference Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is
unlocked.
2 1 GHz Reference Unlocked. A 1 in this bit indicates that the 1 GHz reference signal is
unlocked.
3,4 Unused. These bits are always set to 0.
5 Sampler Loop Unlocked. A 1 in this bit indicates that the sampler loop is unlocked.
6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.
7-14 | Unused. These bits are always set to 0.
15 Always 0.
Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in
the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QESt i onabl e: FREQuency: NTRansi ti on <val ue> (negative) or

STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive) where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: FREQuency: NTRansi ti on?

STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

128

Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters.
Event registers are destructive read-only. Reading data from an event register clears the
content of that register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the
summary bit (bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENABl e <val ue>, where <val ue> is the sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Frequency summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT: QUES: FREQ ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: FREQuency: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABIl e <val ue>command.

Chapter 3 129

Programming the Status Register System
Status Groups

Data Questionable Modulation Status Group

The Data Questionable Modulation Status Group is used to determine the specific event that
set bit 7 in the Data Questionable Condition Register. This group consists of the Data
Questionable Modulation Condition Register, the Data Questionable Modulation Transition
Filters (negative and positive), the Data Questionable Modulation Event Register, and the

Data Questionable Modulation Event Enable Register.

Modulation 1 Undermod
Modulation 1 Overmod
Modulation 2 Undermod
Modulation 2 Overmod
Unused
Pulse Generator Unlocked

Internal Modulation Source Unlocked
Unused
Unused
Unused
Unused

Unused

Unused
Unused
Unused
Always Zero (0)

DataQu_estionablen Yy
E)Agr?é‘ilt?gr?%egister | 15 14 13 12

Data Questionable + + + +

-
-«
>
-«
-
>
-
>
-

- |la
- [
—

o ™

[— — |-

||
O [O [« O [4{ o

Transition Filter + + + +

Data Questionable

Modulation |15 14 13 12

Event Register
&
& })
&

|
-
Y e e e

© g ® g ® g o |
S N N N
oo leo e o
O 4 01 e O [o1 |
NG SV N VIR N I [N
W [W [W | W
N [N N

Modulation

Positive [15 14 13 12 11 10 1 0]

Transition Filter

'\D/Iatg?tiestionable + + + + +

odulation

Modulati [15 14 13 12 11 10 1 0]
1

-
e
—
o

&
&
% &
-@ T ® Yy
OF-N |
&
O oY
2O}
Data Questionable f
Modulation
Event . 1514131211109876543210|
Enable Register
Y To Data Questionable Status Group Bit #7

ce97a

130 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware
and firmware status of the signal generator. Condition registers are read-only.

Table 3-9 Data Questionable Modulation Condition Register Bits
Bit | Description
0 Modulation 1 Undermod. A 1 in this bit indicates that the External 1 input, ac coupling on,
is less than 0.97 volts.
1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is
more than 1.03 volts.
2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on,
is less than 0.97 volts.
3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is
more than 1.03 volts.
4 Unused. This bit is always set to 0.
5 Pulse Generator Unlocked. 1 in this bit indicates that the internal pulse generator clock is
unlocked.
6 Internal Modulation Source Unlocked. A 1 in this bit indicates that the internal
modulation source clock is unlocked.
7-14 | Unused. These bits are always set to 0.
15 Always 0.
Query: STATus: QUESt i onabl e: MDul ati on: CONDi ti on?

Response: The decimal sum of the bits set to 1

Chapter 3 131

Programming the Status Register System
Status Groups

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes
in the condition register set corresponding bits in the event register. Changes can be positive
(0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on <val ue> (negative), or
STATus: QUESt i onabl e: MDul ati on: PTRansi ti on <val ue> (positive), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: MCDul at i on: NTRansi ti on?
STATus: QUESt i onabl e: MCDul at i on: PTRansi ti on?

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are destructive
read-only. Reading data from an event register clears the content of that register.

Query: STATus: QUESti onabl e: MDul ation[: EVEN] ?

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the
Data Questionable Modulation Event Register set the summary bit (bit 7 of the Data
Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: MODul at i on: ENABI e <val ue> command where <val ue>
is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Modulation summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT: QUES: MOD: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: MDul at i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: MODul ati on: ENABI e <val ue> command.

132 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

The Data Questionable Calibration Status Group is used to determine the specific event that
set bit 8 in the Data Questionable Condition Register. This group consists of the Data
Questionable Calibration Condition Register, the Data Questionable Calibration Transition
Filters (negative and positive), the Data Questionable Calibration Event Register, and the
Data Questionable Calibration Event Enable Register.

DCFM/DCM Zero Failure
Unused

Unused
Unused
Unused

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused

Always Zero (0

Data Questionable 1 A
Calibration 15 14 13 12 11

Condition Reglster
Data Questionable + + +

Calibration
Positlye |15 14 13 12 11
Transition Filter

Data Questionable ‘ + + + +

Calibration |15 14 13 12 11
Negative

Transition Filter + + + + + +

Dat ti bl
Catbration 2 [15 14 13 12 11 10

Event Register

-
-«
<
-
-
hl
-
-
-
-
-
Bl

— — |

3 e 3 |«

© [© [© [© |[&

-
o
- | =

®© (g © g © |a o |
~ e N e N e
O [O [O [t o [
o1 (e 01 [e{ 01 [a— o
I = R S N
R e e K
N [D [N D

- e

ol oo ledo e

&
&

&

@

Calibration

Event . 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Enable Register

¥ To Data Questionable Status Group Bit #8

Data Questionable f
1

ce98a

Chapter 3 133

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration
status of the signal generator. Condition registers are read only.

Table 3-10 Data Questionable Calibration Condition Register Bits

Bit | Description

0 DCFM/DC®M Zero Failure. A 1 in this bit indicates that the DCFM/DC®M zero calibration
routine has failed. This is a critical error. The output of the source has no validity until the
condition of this bit is 0.

1-14 | Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: CALi brati on: CONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes
in the condition register set corresponding bits in the event register. Changes can be positive
(0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on <val ue> (negative), or
STATus: QUESt i onabl e: CALi brat i on: PTRansi ti on <val ue> (positive), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on?
STATus: QUESt i onabl e: CALi brati on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are destructive
read-only. Reading data from an event register clears the content of that register.

Query: STATus: QUESti onabl e: CALi bration[: EVENt] ?

134 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the
Data Questionable Calibration Event Register set the summary bit (bit 8 of the Data
Questionable Condition register) to 1.

Command: STATus: QUESt i onabl e: CALi brati on: ENABl e <val ue>, where <val ue> is the
sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Calibration summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT: QUES: CAL: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: CALi br ati on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: CALi brati on: ENABI e <val ue>command.

Chapter 3 135

Programming the Status Register System
Status Groups

136 Chapter 3

4 Command Reference

137

Command Reference
Command Reference Information

Command Reference Information

SCPI Command Listings

The Table of Contents lists the PSG SCPI commands without the parameters. The SCPI
command subsystem name will generally have the first part of the command in parenthesis
that is repeated in all commands within the subsystem. The title(s) beneath the subsystem
name is the remaining command syntax. The following example demonstrates this listing:

Communication Subsystem (:SYSTem:COMMunicate)
:GPIB:ADDRess
:LAN:HOSTname

The following examples show the complete commands from the above Table of Contents
listing:

:SYSTem:COMMunicate:GPIB:ADDRess
:SYSTem:COMMunicate:LAN:HOSTname

Softkey and Hardkey Cross Reference

The index is set up so applicable softkeys and hardkeys can be cross-referenced to the
appropriate SCPI command. There are three headings in the index where the softkey or
hardkey names can be found:

= individual softkey or hardkey name
= softkey or hardkey heading

e subsystem name

Supported Signal Generator Series

Within each command section there is a Supported heading. When “All” is shown next to this
heading, this implies that all PSG series signal generators are supported by the SCPI
command. Conversely, when individual PSG series such as PSG-A are shown next to the
heading, only the listed series are supported by the command.

138 Chapter 4

Command Reference
SCPI Basics

SCPI Basics

This section describes the general use of the Standard Commands for Programmable
Instruments (SCPI) language for the PSG Family of signal generators. It is not intended to
teach you everything about the SCPI language; the SCPI Consortium or IEEE can provide
that level of detailed information. For a list of the specific commands available for the signal
generator, refer to the Table of Contents.

For additional information, refer to the following publications:

< |EEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation. New York, NY, 1998.

= |EEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols and Command
Commands for Use with ANSI/IEEE Standard 488.1-1987. New York, NY, 1998.

Common Terms

The following terms are used throughout the remainder of this section:

Command A command is an instruction in SCPI consisting of mnemonics
(keywords), parameters (arguments), and punctuation. You
combine commands to form messages that control instruments.

Controller A controller is any device used to control the signal generator, for
example a computer or another instrument.

Event Command Some commands are events and cannot be queried. An event has
no corresponding setting. It initiates an action at a particular
time.

Program Message A program message is a combination of one or more properly

formatted commands. Program messages are sent by the
controller to the signal generator.

Query A query is a special type of command used to instruct the signal
generator to make response data available to the controller. A
query ends with a question mark. You can query any command
value that you set.

Response Message A response message is a collection of data in specific SCPI
formats sent from the signal generator to the controller.
Response messages tell the controller about the internal state of
the signal generator.

Chapter 4 139

Command Reference

SCPI Basics

Command Syntax

A typical command is made up of keywords prefixed with colons (:). The keywords are followed

by parameters. The following is an example syntax statement:

[SOURce] : POMr[: LEVel] MAXi numj M N nmum

In the example above, the [: LEVel] portion of the command immediately follows the : POAér
portion with no separating space. The portion following the [: LEVel] , M N rmunj MAXi mum) are
the parameters (argument for the command statement). There is a separating space (white

space) between the command and its parameter.

Additional conventions in syntax statements are shown in Table 4-1 and Table 4-2.

Table 4-1 Special Characters in Command Syntax
Characters | Meaning Example
| A vertical stroke between keywords or [SOURce] : AM
parameters indicates alterative choices. For | MOD DEEP| NCRVal
parame_ters, the eﬁec‘F of the command varies DEEP or NORMal are the
depending on the choice. 3
choices.
[] Square brackets indicate that the enclosed [: SOURce] : FREQuency[: QW ?
keywords or parameters are optional when
composing the command. These implied SQURce and CWare optional
keywords or parameters will be executed items.
even if they are omitted.
<> Angle brackets around a word (or words) [: SQURce] : FREQuency:
indicate they are not to be used literally in STARt <val ><uni t >
t(he command. They represent the needed In this command, the words
item. .
<val > and <uni t > should be
replaced by the actual
frequency and unit.
: FREQuency: STARt 2.5G#Z
{} Braces indicate that parameters can [: SOURce] : LI ST:
optionally be used in the command once, PONer <val >, {<val >}
several times, or not at all.
a single power listing:
LI ST: PONer 5
a series of power listings:
LI ST: PONer 5, 10, 15, 20
140 Chapter 4

Table 4-2 Command Syntax

Command Reference
SCPI Basics

Characters, Keywords, and Syntax

Example

Upper-case lettering indicates the minimum set of
characters required for the command.

[1 SQURce] : FREQuency[: QW ?,

FREQis the minimum requirement.

Lower-case lettering indicates the portion of the
command that is optional; it can either be included
with the upper-case portion of the command or
omitted. This is the flexible format principle called
forgiving listening. Refer to “Command Parameters
and Responses” on page 144 for more information.

: FREQuency

Either :FREQ, : FREQuency, or
:FREQUENCY is correct.

When a colon is placed between two command
mnemonics, it moves the current path down one level
in the command tree. Refer to “Command Tree” on
page 143 more information on command paths.

: TR Gger: QUTPut : PQLari ty?

TR Gger is the root level keyword
for this command.

If a command requires more than one parameter, you
must separate adjacent parameters using a comma.
Parameters are not part of the command path, so
commas do not affect the path level.

[SQURce] : LI ST:
DVELI <val >, {<val >}

A semicolon separates two commands in the same

program message without changing the current path.

: FREQ 2. 5GHZ; : POW 10DBM

White space characters, such as <t ab> and <space>,
are generally ignored as long as they do not occur
within or between keywords.

However, you must use white space to separate the
command from the parameter. White space does not
affect the current path.

: FREQ uency or : POMer : LEVel

are not allowed.

A <space> between : LEVel and
6. 2 is mandatory.

: PONer: LEVel 6.2

Chapter 4

141

Command Reference
SCPI Basics

Command Types

Commands can be separated into two groups: common commands and subsystem commands.
Figure 4-1, shows the separation of the two command groups.

Common commands are used to manage macros, status registers, synchronization, and data
storage and are defined by IEEE 488.2. They are easy to recognize because they all begin with
an asterisk. For example *| DN?, * GPC, and * RST are common commands. Common commands
are not part of any subsystem and the signal generator interprets them in the same way,
regardless of the current path setting.

Subsystem commands are distinguished by the colon (:). The colon is used at the beginning of
a command statement and between keywords, as in : FREQuency[: CA?] . Each command
subsystem is a set of commands that roughly correspond to a functional block inside the
signal generator. For example, the power subsystem (: POMr) contains commands for power
generation, while the status subsystem (: STATus) contains commands for controlling status
registers.

Figure 4-1 Command Types
SCPI
COMMON SUBSYSTEM
COMMANDS COMMANDS
*RST : MEAS : VOLT ?
*IDN? :FREQ 1KHz

ck709a

142 Chapter 4

Command Reference
SCPI Basics

Command Tree

Most programming tasks involve subsystem commands. SCPI uses a structure for subsystem
commands similar to the file systems on most computers. In SCPI, this command structure is
called a command tree and is shown in Figure 4-2.

Figure 4-2 Simplified Command Tree
AA
BB CcC oD
I I I I
EE FF GG HH JJ
ck710a

The command closest to the top is the root command, or simply “the root.” Notice that you
must follow a particular path to reach lower level commands. In the following example,

: POMer represents AA, : ALC represents BB, : SOURce represents GG. The complete command
path is: POMr: ALC. SOURce? (:AA:BB:GG).

Paths Through the Command Tree

To access commands from different paths in the command tree, you must understand how the
signal generator interprets commands. The parser, a part of the signal generator firmware,
decodes each message sent to the signal generator. The parser breaks up the message into
component commands using a set of rules to determine the command tree path used. The
parser keeps track of the current path (the level in the command tree) and where it expects to
find the next command statement. This is important because the same keyword may appear
in different paths. The particular path is determined by the keyword(s) in the command
statement.

A message terminator, such as a <new | i ne> character, sets the current path to the root.
Many programming languages have output statements that automatically send message
terminators.

NOTE The current path is set to the root after the line-power is cycled or when
*RST is sent.

Chapter 4 143

Command Reference
SCPI Basics

Command Parameters and Responses

SCPI defines different data formats for use in program and response messages. It does this to
accommodate the principle of forgiving listening and precise talking. For more information on
program data types refer to IEEE 488.2.

Forgiving listening means the command and parameter formats are flexible.

For example, with the : FREQuency: REFer ence: STATe ON| CFF| 1| 0 command, the signal
generator accepts : FREQuency: REFer ence: STATe ON, : FREQuency: REFer ence: STATe 1,
: FREQ REF: STAT ON, : FREQ REF: STAT 1 to turn on the source’s frequency reference mode.

Each parameter type has one or more corresponding response data types. A setting that you
program using a numeric parameter returns either real or integer response data when
gueried. Response data (data returned to the controller) is more concise and restricted and is
called precise talking.

Precise talking means that the response format for a particular query is always the same.

For example, if you query the power state (: PONér : ALC. STATe?) when it is on, the response is
always 1, regardless of whether you previously sent : POMr: ALC. STATe 1 or
- POver: ALC STATe ON

Table 4-3 Parameter and Response Types
Parameter Types Response Data Types
Numeric Real, Integer
Extended Numeric Real, Integer
Discrete Discrete
Boolean Numeric Boolean
String String

Numeric Parameters

Numeric parameters are used in both common and subsystem commands. They accept all
commonly used decimal representations of numbers including optional signs, decimal points,
and scientific notation.

If a signal generator setting is programmed with a numeric parameter which can only assume
a finite value, it automatically rounds any entered parameter which is greater or less than the
finite value. For example, if a signal generator has a programmable output impedance of 50 or
75 ohms, and you specified 76.1 for the output impedance, the value is rounded to 75.

144 Chapter 4

Command Reference
SCPI Basics

The following are examples of numeric parameters:

100

100.

-1.23
4.56E<space>3
-7.89E-001
+256

.5

Extended Numeric Parameters

no decimal point required

fractional digits optional

leading signs allowed

space allowed after the E in exponential
use either E or e in exponential

leading plus sign allowed

digits left of decimal point optional

Most subsystems use extended numeric parameters to specify physical quantities. Extended
numeric parameters accept all numeric parameter values and other special values as well.

The following are examples of extended numeric parameters:

100
1.2GHzZ
200MHZ
-100mV
10DEG

any simple numeric value

GHZ can be used for exponential (E009)
MHZ can be used for exponential (E006)
negative 100 millivolts

10 degrees

Extended numeric parameters also include the following special parameters:

DEFault
uP
DOWN
MINimum

MAXimum

resets the parameter to its default value
increments the parameter

decrements the parameter

sets the parameter to the smallest possible value

sets the parameter to the largest possible value

Chapter 4

145

Command Reference
SCPI Basics

Discrete Parameters

Discrete parameters use mnemonics to represent each valid setting. They have a long and a
short form, just like command mnemonics. You can mix upper and lower case letters for
discrete parameters.

The following examples of discrete parameters are used with the command
: TR Gger [: SEQuence] : SOURce BUS| | Mvedi at e| EXTer nal .

BUS GPIB triggering
IMMediate immediate trigger (free run)
EXTernal external triggering

Although discrete parameters look like command keywords, do not confuse the two. In
particular, be sure to use colons and spaces properly. Use a colon to separate command
mnemonics from each other and a space to separate parameters from command mnemonics.

The following are examples of discrete parameters in commands:
TRI Gger : SOURce BUS
TR (ger: SOURce | Mvedi at e
TR (ger : SOURce EXTer nal

Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. The
two-state boolean parameter has four arguments. The following list shows the arguments for
the two-state boolean paramenter:

ON boolean true, upper/lower case allowed
OFF boolean false, upper/lower case allowed
1 boolean true

0 boolean false

146 Chapter 4

Command Reference
SCPI Basics

String Parameters

String parameters allow ASCII strings to be sent as parameters. Single or double quotes are
used as delimiters.

The following are examples of string parameters:
"This is valid
"This is also valid"

"SOIS TH S

Real Response Data

Real response data represent decimal numbers in either fixed decimal or scientific notation.
Most high-level programming languages that support signal generator input/output (1/0)
handle either decimal or scientific notation transparently.

The following are examples of real response data:
+4.000000E+010, —9.990000E+002
-9.990000E+002
+4.0000000000000E+010
+1
0

Integer Response Data

Integer response data are decimal representations of integer values including optional signs.
Most status register related queries return integer response data.

The following are examples of integer response data:

0 signs are optional
+100 leading + allowed
-100 leading — allowed
256 never any decimal point

Chapter 4 147

Command Reference
SCPI Basics

Discrete Response Data

Discrete response data are similar to discrete parameters. The main difference is that discrete
response data only return the short form of a particular mnemonic, in all upper case letters.

The following are examples of discrete response data:
IMM
EXT
INT
NEG

Numeric Boolean Response Data

Boolean response data returns a binary numeric value of one or zero.

String Response Data

String response data are similar to string parameters. The main difference is that string
response data returns double quotes, rather than single quotes. Embedded double quotes may
be present in string response data. Embedded quotes appear as two adjacent double quotes
with no characters between them.

The following are examples of string response data:
"This is a string"
"one doubl e quote inside brackets: [""]"

"Hell ol

148 Chapter 4

Command Reference
SCPI Basics

Program Messages

The following commands will be used to demonstrate the creation of program messages:

[1 SOURce] : FREQuency: STAR [1 SOURce] : FREQuency: STCP
[1 SOURce] : FREQuency[: CW [SQURce] : POMer [: LEVel | : OFFSet
Example 1

: FREQuency: STAR 500MHz; STOP 1000MH

This program message is correct and will not cause errors; STAR and STCP are at the same
path level. It is equivalent to sending the following message:

FREQuency: STAR 500MHZ; FREQuency: STOP 1000MHZ

Example 2
: POMer 10DBM : CFFSet 5DB

This program message will result in an error. The message makes use of the default
POMer [: LEVel] node (root command). When using a default node, there is no change to the
current path position. Since there is no command CFFSet at the root level, an error results.

The following example shows the correct syntax for this program message:
: POMr 10DBM : POMer: OFFSet 5DB

Example 3
:POWer : OFFSet 5DB; PONer 10DBM

This program message results in a command error. The path is dropped one level at each
colon. The first half of the message drops the command path to the lower level command
OFFSet ; POMr does not exist at this level.

The POXr 10DBMcommand is missing the leading colon and when sent, it causes confusion
because the signal generator cannot find POAér at the POMr : OFFSet level. By adding the
leading colon, the current path is reset to the root. The following shows the correct program
message:

: POMer : OFFSet 5DB; : PONer 10DBM

Example 4
FREQ 500MZ; PON 4DBM

In this example, the keyword short form is used. The program message is correct because it
utilizes the default nodes of : FREQ : CW and : PON : LEVel] . Since default nodes do not affect
the current path, it is not necessary to use a leading colon before FREQ or POV

Chapter 4 149

Command Reference
SCPI Basics

File Name Variables

File name variables, such as "<fi | e name>", represent two formats, "<fil e name>" and
"<file nane@il e systenr". The following shows the file name syntax for the two formats,
but uses " FLATCAL" as the file name in place of the variable "<fi | e nane>":

Format 1 " FLATCAL"
Format 2 " FLATCAL QJSERFLAT"

Format 2 uses the file system extension (QUSERFLAT) as part of the file name syntax. Use
Format 2 when the command does not specify the file system. This generally occurs in the
Memory (: MEMory) or Mass Memory (: MMEMbr y) subsystems.

The following examples demonstrate a command where Format 1 applies:
Command Syntax with the file name variable
: MEMory: STORe: LI ST "<fil e name>"
Command Syntax with the file name
: MEMory: STORe: LI ST " SWEEP 1"

This command has : LI ST in the command syntax. This denotes that " SWEEP_1" will be saved
in the List file system as a list file type.

The following examples demonstrate a command where Format 2 applies:
Command Syntax with the file name variable
:MVEMDry: GOPY "<file nane>","<fil e name>"
Command Syntax with the file name

- MVEMory: COPY " FLATCAL@QUSERFLAT", "FLAT_2CAL@QUSERFLAT"

This command cannot distinguish which file system "FLATCAL" belongs to without the file
system extension (QUSERFLAT). If this command were executed without the extension, the
file would not be copied.

Refer to Table 4-4 on page 185 for a listing of the file systems and types.

150 Chapter 4

Command Reference
SCPI Basics

MSUS (Mass Storage Unit Specifier) Variable

The variable " <nsus>" enables a command to be file system specific when working with user
files. Some commands use it as the only command parameter, while others can use it in
conjunction with a file name when a command is not file system specific. When used with a
file name, it is similar to Format 2 in the “File Name Variables” on page 150. The difference is
the file system specifier (msus) occupies its own variable and is not part of the file name
syntax.

The following examples illustrate the usage of the variable " <nsus>" when it is the only
command parameter:

Command Syntax with the msus variable
: MVEMor y: CATal 0g? " <nsus>"
Command Syntax with the file system

: MVEMDry: CATal og? "LIST:"

The variable " <nmsus>" is replaced with " LI ST: ". When the command is executed, the output
displays only the files from the List file system.

The following examples illustrate the usage of the variable "<fi |l e nane>" with the variable
"<msus>":

Command Syntax with the file name and msus variable
: MVEMDry: DELet e[: NAME] "<fil e name>",["<nsus>"]
Command Syntax with the file name and file system

: MMEMbry: DELet e: NAME "LIST_1","LI ST: "

The command from the above example cannot discern which file system LIST_1 belongs to
without a file system specifier and will not work without it. When the command is properly
executed, LIST_1 is deleted from the List file system.

The following example shows the same command, but using Format 2 from the “File Name
Variables” on page 150:

: MVEMory: DELet e: NAME " LI ST_1@l ST"

When a file name is a parameter for a command that is not file system specific, either format
("<file nanme>","<nsus>" or"<file nane@ile systenms") will work.

Refer to Table 4-4 on page 185 for a listing of the file systems and types.

Chapter 4 151

Command Reference
SCPI Basics

Quote Usage with SCPI Commands

As a general rule, programming languages require that SCPI commands be enclosed in double
guotes as shown in the following example:

": FM EXTer nal : | MPedance 600"

However, when a string is the parameter for a SCPI command, additional quotes or other
delimiters may be required to identify the string. Your programming language may use two
sets of double quotes, one set of single quotes, or back slashes with quotes to signify the string
parameter. The following examples illustrate these different formats:

"MEMOry: LOAD: LI ST ""nyfile""" usedin BASIC programming languages
"MEMOry: LOAD: LI ST \"nyfile\"" usedin C, C++, Java, and PERL
"MEMOry: LOAD: LI ST "nyfile ™ accepted by most programming languages

Consult your programming language reference manual to determine the correct format.

152 Chapter 4

Command Reference
SCPI Basics

Binary, Decimal, Hexadecimal, and Octal Formats

Command values may be entered using a binary, decimal, hexadecimal, or octal format. When
the binary, hexadecimal, or octal format is used, their values must be preceded with the
proper identifier. The decimal format (default format) requires no identifier and the signal
generator assumes this format when a numeric value is entered without one. The following
list shows the identifiers for the formats that require them:

= #B identifies the number as a binary numeric value (base-2).

= #H identifies the number as a hexadecimal alphanumeric value (base-16).

= #Q identifies the number as a octal alphanumeric value (base-8).

The following are examples of SCPI command values and identifiers for the decimal value 45:

#B101101 binary equivalent

#H2D hexadecimal equivalent
#(B5 octal equivalent
NOTE While the commands accept the different numeric formats, the queries will

return all values in decimal.

The following example sets the RF output power to 10 dBm (or the equivalent value for the
currently selected power unit, such as DBUV or DBUVEMF) using the hexadecimal value 000A:

: POV #HO00A

A unit of measure, such as DBMor nV, will not work with the values when using a format other
than decimal.

Chapter 4 153

Command Reference
IEEE 488.2 Common Commands

IEEE 488.2 Common Commands

*CLS

Supported All
*CLS

The Clear Status (CLS) command clears the Status Byte Register, the Data
Questionable Event Register, the Standard Event Status Register, the Standard
Operation Status Register and any other registers that are summarized in the status
byte.

*RST N/A

Range N/A

Key Entry N/A

Remarks N/A
*ESE

Supported All
*ESE <dat a>

The Standard Event Status Enable (ESE) command sets the Standard Event Status
Enable Register.

The variable <data> represents the sum of the bits that will be enabled.
*RST N/A

Range 0-255
Key Entry N/A
Remarks The setting enabled by this command is not affected by signal

generator preset or * RST. However, cycling the signal generator power
will reset this register to zero.

Refer to “Standard Event Status Group” on page 114 and “Standard
Event Status Enable Register” on page 116 for more information.

154

Chapter 4

Command Reference
IEEE 488.2 Common Commands

*ESE?
Supported All
* ESE?

The Standard Event Status Enable (ESE) query returns the value of the Standard Event
Status Enable Register.

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “Standard Event Status Group” on page 114 and “Standard

Event Status Enable Register” on page 116 for more information.

*ESR?
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
gueried. Once queried, the data is cleared.

*ESR?

The Standard Event Status Register (ESR) query returns the value of the Standard
Event Status Register.

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “Standard Event Status Group” on page 114 and “Standard

Event Status Register” on page 115 for more information.

Chapter 4 155

Command Reference
IEEE 488.2 Common Commands

*IDN?
Supported All
*| DN?

The Identification (IDN) query outputs an identifying string. The response will show the
following information:

<conpany nane>, <nmodel nunber>, <serial nunber>, <firnware revision>

*RST N/A

Range N/A

Key Entry Diagnostic Info

Remarks The identification information can be modified. Refer to

“:SYSTem:IDN” on page 294 for more information.

*OPC
Supported All
*QOPC

The Operation Complete (OPC) command sets bit 0 in the Standard Event Status
Register when all pending operations have finished.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

156 Chapter 4

Command Reference
|IEEE 488.2 Common Commands

*OPC?
Supported All
*OPC?

The Operation Complete (OPC) query returns the ASCII character 1 when all pending
operations have finished.

*RST N/A

Range N/A

Key Entry N/A

Remarks N/A
*PSC

Supported All
*PSC ON OFF| 1| 0

The Power-On Status Clear (PSC) command controls the automatic power-on clearing of
the Service Request Enable Register, the Standard Event Status Enable Register, and
device-specific event enable registers.

ON (1) This choice enables the power-on clearing of the listed registers.

OFF (0) This choice disables the clearing of the listed registers and they retain
their status when a power-on condition occurs.

*RST N/A

Choices ON OFF 1 0

Key Entry N/A

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

Chapter 4 157

Command Reference
IEEE 488.2 Common Commands

*PSC?

Supported All
*PSC?

The Power-On Status Clear (PSC) query returns the flag setting as enabled by the *PSC
command.

*RST N/A

Range N/A

Key Entry N/A

Remarks N/A
*RCL

Supported All
*RCL <reg>, <seq>

The Recall (RCL) command recalls the signal generator’s state from the specified
memory register <reg> of the specified sequence <seq>.

*RST N/A
Range Registers: 0—99 Sequences: 0-9
Key Entry RECALL Reg Select Seq:
Remarks N/A

*RST

Supported All
*RST

The Reset (RST) command resets most signal generator functions to factory-defined
conditions.

*RST N/A
Range N/A
Key Entry N/A
Remarks Each command in this chapter shows the *RST value where the setting
is affected.
158

Chapter 4

Command Reference
|IEEE 488.2 Common Commands

*SAV
Supported All

*SAV <reg>, <seq>

The Save (SAV) command saves the state of the signal generator to the specified memory
register <reg> of the specified sequence <seg>.

*RST N/A
Range Registers: 0—99 Sequences: 0-9
Key Entry Save Reg Save Seq[n] Reg[nn]
Remarks N/A

*SRE

Supported All
*SRE <dat a>

The Service Request Enable (SRE) command sets the value of the Service Request
Enable Register.

The variable <val> is the decimal sum of the bits that will be enabled. Bit 6 (value 64) is
ignored and cannot be set by this command.

*RST N/A

Range 0-255

Key Entry N/A

Remarks Refer to “Generating a Service Request” on page 107, “Status Byte

Group” on page 110, and “Service Request Enable Register” on
page 112 for more information.

Entering values from 64 to 127 is equivalent to entering values from 0
to 63.

The setting enabled by this command is not affected by signal
generator preset or * RST. However, cycling the signal generator power
will reset it to zero.

Chapter 4 159

Command Reference
IEEE 488.2 Common Commands

*SRE?

Supported
* SRE?

All

The Service Request Enable (SRE) query returns the value of the Service Request

Enable Register.
*RST

Range

Key Entry

Remarks

*STB?

Supported
*STB?

N/A
0-63 or 128-191
N/A

Refer to “Status Byte Group” on page 110 and “Service Request Enable
Register” on page 112 for more information.

All

The Read Status Bye (STB) query returns the value of the status byte including the
master summary status (MSS) bit.

*RST
Range
Key Entry

Remarks

*TRG

Supported
*TRG

N/A
0-255
N/A

Refer to the “Status Byte Register” on page 111 for more information.

All

The Trigger (TRG) command triggers the device if BUS is the selected trigger source,
otherwise, *TRG is ignored.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
160 Chapter 4

Command Reference
|IEEE 488.2 Common Commands

*TST?
Supported All
*TST?
The Self-Test (TST) query initiates the internal self-test and returns one of the following
results:
0 This shows that all tests passed.
1 This shows that one or more tests failed.
*RST N/A
Range N/A
Key Entry Run Complete Self Test
Remarks N/A
*WAI

Supported All
*WAl

The Wait-to-Continue (WAI) command causes the signal generator to wait until all
pending commands are completed, before executing any other commands.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

Chapter 4 161

Command Reference
Calibration subsystem (:CALibration)

Calibration subsystem (:CALibration)

:DCFM
Supported PSG-A Series
: CALi brati on: DCFM

This command initiates a DCFM or DC®M calibration depending on the currently active
modulation. This calibration eliminates any dc or modulation offset of the carrier signal.

NOTE If the calibration is performed with a dc signal applied, any deviation
provided by the dc signal will be removed and the new zero reference point
will be at the applied dc level. The calibration will have to be performed
again when the dc signal is disconnected to reset the carrier signal to the
correct zero reference.

*RST N/A

Range N/A

Key Entry DCFM/DC®M Cal

Remarks Use this calibration for externally applied signals. While the

calibration can also be performed for internally generated signals, dc
offset is not a normal characteristic for them.

162 Chapter 4

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

Communication Subsystem (:SYSTem:COMMunicate)

:GPIB:ADDRess

Supported All

: SYSTem COMMINI cat e: GPl B: ADDRess <nunber >
: SYSTem COMMUNI cat e: GPl B: ADDRess?

This command sets the GPIB address of the signal generator.

*RST N/A

Range 0-30

Key Entry GPIB Address

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

‘LAN:HOSThame

Supported All

: SYSTem COWUNI cat e: LAN HOSTnane "<stri ng>"
: SYSTem COWUNI cat e: LAN HOSTnane?

This command sets the LAN hostname for the signal generator.

*RST N/A

Range N/A

Key Entry Hostname

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

Chapter 4 163

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

‘LAN:IP

Supported All

: SYSTem COMMUni cate: LAN | P "<i pstri ng>"
: SYSTem COWMWMINI cat e: LAN | P?

This command sets the LAN IP address for the signal generator.

*RST N/A

Range N/A

Key Entry IP Address

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

‘PMETer:ADDRess

Supported All

: SYSTem COMMuNi cat e: PMETer : ADDRess <0-30>
:SYSTem:COMMunicate:PMETer:ADDRess?

This command sets the address for a power meter that is controlled by the signal
generator.

*RST N/A

Range 0-30

Key Entry Meter Address

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.
The power meter is controlled only through a GPIB cable.

Ensure that the power meter address is different from the signal
generator address.

164

Chapter 4

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

‘PMETer:CHANnNel

Supported

All

: SYSTem COWMUNI cat e: PMETer : CHANnel Al B
: SYSTem COWMuNi cat e: PMETer : CHANnel ?

This command sets the measurement channel on the power meter that is controlled by
the signal generator.

*RST
Choices

Key Entry

Remarks

:PMETer:IDN
Supported

N/A
A B

Meter Channel AB

A single-channel power meter uses channel A and selecting channel B
will have no effect.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

The power meter is controlled only through a GPIB cable.

All

: SYSTem COMMUNI cat e: PVETer : | DN E4418B| E4419B| E4416A| E4417A
: SYSTem COMMuNi cat e: PMETer : | DN?

This command sets the model number of the power meter that is controlled by the signal

generator.

*RST
Choices

Key Entry

Remarks

N/A
E4416A E4417A EA4418B E4419B

Power Meter

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

The power meter is controlled only through a GPIB cable.

Chapter 4

165

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

‘PMETer: TIMEout

Supported All

: SYSTem COMMUNI cat e: PMETer : TI MEout <nun®[<ti ne suffix>]
: SYSTem COMMINI cat e: PMETer : Tl Meout ?

This command sets the period of time which the signal generator will wait for a valid
reading from the power meter.

The variable <num> has a resolution of 0.001.

*RST N/A

Range 1mS-100S

Key Entry Meter Timeout

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.
The power meter is controlled only through a GPIB cable.

If a time-out occurs, the signal generator reports an error message.

:SERiIal:BAUD

Supported All

: SYSTem COMMuNi cat e: SERI al : BAUD <nunber >
: SYSTem COMMINI cat e: SER al : BAUD?

This command sets the baud rate for the rear panel RS-232 interface (AUXILIARY
INTERFACE).

*RST N/A

Choices <number>: 300 1200 2400 4800 9600 19200 38400 57600
Key Entry RS-232 Baud Rate

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

166

Chapter 4

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:SERial:ECHO
Supported All

: SYSTem COWLNI cat e: SER al : ECHO ON| OFF| 1| O
: SYSTem COWMUNI cat e: SER al : ECHO?

This command enables or disables the RS-232 echo.

*RST N/A

Choices ON OFF

Key Entry RS-232 ECHO Off On

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

:SERiIal:RECeive:PACE
Supported All

: SYSTem COWNI cat e: SER al : RECei ve: PACE XON NONE
: SYSTem COWINI cat e: SER al : RECei ve: PACE?

This command sets XON/XOFF handshaking when the signal generator is receiving

data.

*RST N/A

Choices XON NONE

Key Entry Trans/Recv Pace None Xon

Remarks The serial receive and serial transmit commands are coupled.

Changing the choice for one will enable the same choice for the other.
Refer to “:SERial: TRANsmit:PACE” on page 169 for the serial transmit
command.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

Chapter 4 167

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:SERial:RESet

Supported All
: SYSTem COWMUNI cat e: SER al : RESet

This event command resets the RS-232 buffer and will discard any unprocessed SCPI
input received by the RS-232 port.

*RST N/A
Range N/A
Key Entry Reset RS-232
Remarks N/A

SERial:TOUT

Supported All

: SYSTem COMMINI cat e: SER al : TQUT <val >
: SYSTem COMMUNi cat e: SER al : TQUJT?

This command sets the value for the RS-232 serial port time-out. If further input is not
received within the assigned time-out period while a SCPI command is being processed,
the command is aborted and the input buffer is cleared.

The variable <val> is entered in units of seconds.

*RST N/A

Range 10-60

Key Entry RS-232 Timeout

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

168

Chapter 4

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:SERiIal: TRANsmit:PACE
Supported All

: SYSTem COWUNI cat e: SER al : TRANsmi t : PACE XON| NONE
: SYSTem COWMINI cat e: SER al : TRANsmi t : PACE?

This command sets XON/XOFF handshaking when the signal generator is transmitting

data.

*RST N/A

Choices XON NONE

Key Entry Trans/Recv Pace None Xon

Remarks The serial receive and serial transmit commands are coupled.

Changing the choice for one will enable the same choice for the other.
Refer to “:SERial:RECeive:PACE” on page 167 for the serial receive
command.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

Chapter 4 169

Command Reference
Diagnostic Subsystem (:DIAGnostic)

Diagnostic Subsystem (:DIAGnNostic)

[:CPU]:INFOrmation:BOARds

Supported All
;D AGnhostic[: CPY : | NFOr nat i on: BOARdS?

This query returns a list of the installed boards in the signal generator. The information
will be returned in the following format:

"<board nane, part nunber, serial nunber, version nunber, stat us>"

This information format will repeat with as many iterations as the number of detected
boards in the signal generator.

*RST N/A
Range N/A
Key Entry Installed Board Info
Remarks N/A

[:CPU]:INFOrmation:CCOunt:AT Tenuator

Supported All
: Dl AGnhostic[: CPY : | NFOr mat i on: COQunt : ATTenuat or ?

This query returns the cumulative number of times that the attenuator has been
switched.

*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A
170

Chapter 4

Command Reference
Diagnostic Subsystem (:DIAGnostic)

[:CPU]:INFOrmation:CCOunt:PON
Supported All
: Dl AGnhostic[: CPY : | NFOr mat i on: COQunt : PON?

This query returns the cumulative number of times that the signal generator’s line
power has been cycled.

*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A

[:CPU]:INFOrmation:DISPlay:OTIMe
Supported All
Dl AGhostic[: CPY : I NFOrnmat i on: DI SPI ay: OTl Me?

This query returns the cumulative number of hours that the signal generator’s display

has been on.

*RST N/A

Range N/A

Key Entry Diagnostic Info
Remarks N/A

[:CPU].INFOrmation:OPTions
Supported All
;DI AGnhostic[: CPY : | NFOr nat i on: CPTi ons?

This query returns a list of internally installed signal generator options.

*RST N/A
Range N/A
Key Entry Options Info
Remarks N/A

Chapter 4 171

Command Reference
Diagnostic Subsystem (:DIAGnostic)

[:CPU].INFOrmation:OPTions:DETail

Supported All
: Dl AGnhostic[: CPY : | NFOr nat i on: CPTi ons: DETai | ?

This query returns the options that are installed along with the option revision and DSP
version if applicable.

*RST N/A
Range N/A
Key Entry Options Info
Remarks N/A

[:CPU]:INFOrmation:OTIMe

Supported All
;D AGnhostic[: CPY : | NFOr nat i on: OTl Me?

This query returns the cumulative number of hours that the signal generator has been
on.

*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A

[:CPU].INFOrmation:REVision

Supported All

: D AGhostic[: CPY : | NFOr nat i on: REVi si on?

This query returns the revision, date, and time of the signal generator’'s main firmware.
*RST N/A

Range N/A
Key Entry Diagnostic Info
Remarks N/A

172

Chapter 4

Command Reference
Diagnostic Subsystem (:DIAGnostic)

[:CPU]:INFOrmation:SDATe
Supported All
: Dl AGnhostic[: CPY : | NFOr nat i on: SDATe?

This query returns the date and time of the signal generator’s main firmware.

*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A

Chapter 4 173

Command Reference
Display Subsystem (:DISPlay)

Display Subsystem (:DISPlay)

:‘BRIGhtness

Supported All

: DI SPl ay: BRI Ght ness <val ue>
: DI SPl ay: BRI Ght ness?

This command sets the display brightness. The brightness can be set to the minimum
level (0.02), maximum level (1), or in between by using fractional numeric
values (0.03-0.99).

*RST N/A

Range 0.02-1

Key Entry Brightness

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

:CAPture

Supported All
: DI SPl ay: CAPTur e

This event command enables the user to capture the current display and store it in the
signal generator's memory.

*RST N/A
Range N/A
Key Entry N/A
Remarks The display capture is stored as DISPLAY.BMP in the Binary file

system. This file is overwritten with each subsequent display capture.
The file can be down-loaded in the following manner:

1. Log on to the signal generator using ftp.
2. Change (cd) to the BIN directory.

3. Retrieve the file by using the get command.

174

Chapter 4

Command Reference
Display Subsystem (:DISPlay)

:CONTrast

Supported All

: DI SPl ay: OONTr ast <val ue>
: DI SPl ay: CONTr ast ?

This command sets the contrast of the of the signal generator's LCD display. The
contrast can be set to the maximum level (1), minimum level (0), or in between by using
fractional numeric values (0.001-0.999).

*RST N/A

Range 0-1

Key Entry Display contrast hardkeys located below the display
Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

:INVerse

Supported All

;DI SPlay: | N\Verse ON CFF| 1|0
: DI SPl ay: | NVer se?

This command sets the display of the source to inverse video mode.

*RST N/A

Choices ON OFF 1 O

Key Entry Inverse Video Off On

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

Chapter 4 175

Command Reference
Display Subsystem (:DISPlay)

‘REMote

Supported

All

;DI SPlay: REMbte ON OFF| 1| O
: DI SPl ay: REMbt €?

This command enables or disables the source’s display updating when the signal
generator is remotely controlled.

ON (1)

OFF (0)

*RST
Choices

Key Entry

Remarks

This choice updates the signal generator display so you can see the
settings as the commands are executed, however, this will degrade the
signal generator speed.

This choice turns off the display updating while further optimizing the
signal generator for speed.

N/A
ON OFF 1 O
Update in Remote Off On

The setting enabled by this command is not affected by signal
generator preset or * RST. However, cycling the signal generator power
will reset it to zero.

[:WINDow][:STATe]

Supported

All

: DI SPlay[: WNDow| [: STATe] ON CFF| 1] 0
: DI SPl ay[: WNDow [: STATe] ?

This command is used to either blank out (OFF or 0) the display screen or turn it on (ON

or 1).

*RST N/A

Choices ON OFF 1 O

Key Entry N/A

Remarks The setting enabled by this command is not affected by * RST. However,
presetting the signal generator or cycling the power will turn the
display on.

176 Chapter 4

Command Reference
Memory Subsystem (:MEMory)

Memory Subsystem (:MEMory)

:CATalog:BINary

Supported All
: MEMory: CATal og: Bl Nary?

This command outputs a list of the binary files. The return data will be in the following
form:

<nmem used>, <mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file nane,file type,file size>"

*RST N/A

Range N/A

Key Entry Binary

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

Chapter 4 177

Command Reference
Memory Subsystem (:MEMory)

:CATalog:LIST

Supported All
: MEMory: CATal og: LI ST?

This command outputs a list of the list sweep files. The return data will be in the
following form:

<mem used>, <nem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file nane,file type,file size>"

*RST N/A
Range N/A
Key Entry List
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:CATalog:STATe

Supported All
: MEMory: CATal og: STATe?

This command outputs a list of the state files. The return data will be in the following
form:

<nmem used>, <mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file nane,file type,file size>"

*RST N/A
Range N/A
Key Entry State
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

178

Chapter 4

Command Reference
Memory Subsystem (:MEMory)

:CATalog:UFLT
Supported All
: MEMory: CATal og: UFLT?

This command outputs a list of the user flatness correction files. The return data will be
in the following form:

<mem used>, <nem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file nane,file type,file size>"

*RST N/A

Range N/A

Key Entry User Flatness

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:CATalog[:ALL]
Supported All
: MEMory: CATal og[: ALL] ?

This command outputs a list of all the files in the memory subsystem. The return data
will be in the following form:

<mem used>, <nem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the memory subsystem. Each file listing parameter will be in
the following form:

"<file nane,file type,file size>"

*RST N/A

Range N/A

Key Entry All

Remarks Refer to Table 4-4 on page 185 for a listing of the file types and “File

Name Variables” on page 150 for information on the file name syntax.

Chapter 4 179

Command Reference
Memory Subsystem (:MEMory)

:COPY[:NAME]
Supported All
: MEMory: OCPY[: NAME] "<fil e name>","<file nane>"

This command makes a duplicate of the requested file.

*RST N/A

Range N/A

Key Entry Copy File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:DATA

Supported All

: MEMory: DATA "<fil e nanme>", <dat abl ock>
: MEMory: DATA? "<file nane>"

This command loads <datablock> into the memory location "<file name>". The query
returns the <datablock> associated with the "<file name>".

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

180 Chapter 4

Command Reference
Memory Subsystem (:MEMory)

:DELete:ALL

Supported All

CAUTION Using this command deletes all user files including binary, list, state, and
flatness correction files, and any saved setups which use the table editor.
You cannot recover the files after sending this command.

: MEMory: DELet e: ALL

This command clears the file system of all user files.

*RST N/A
Range N/A
Key Entry Delete All Files
Remarks N/A

‘DELete:BINary

Supported All
:MEMory: DELet e: Bl Nary

This command deletes all binary files.

*RST N/A
Range N/A
Key Entry Delete All Binary Files
Remarks N/A

Chapter 4 181

Command Reference
Memory Subsystem (:MEMory)

:DELete:LIST

Supported All
: MEMory: DELet e: LI ST

This command deletes all list files.

*RST N/A
Range N/A
Key Entry Delete All List Files
Remarks N/A

:DELete:STATe

Supported All
: MEMory: DELet e: STATe

This command deletes all state files.

*RST N/A
Range N/A
Key Entry Delete All State Files
Remarks N/A

:DELete:UFLT

Supported All
: MEMory: DELet e: UFLT

This command deletes all user flatness correction files.

*RST N/A
Range N/A
Key Entry Delete All UFLT Files
Remarks N/A
182

Chapter 4

Command Reference
Memory Subsystem (:MEMory)

:DELete[:NAME]
Supported All
: MEMory: DELet e[: NAME] "<file name>"

This command clears the user file system of "<file name>".

*RST N/A

Range N/A

Key Entry Delete File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:FREE[:ALL]
Supported All
: MEMOry: FREE[: ALL] ?

This command returns the number of bytes left in the user file system.

*RST N/A
Range N/A
Key Entry All
Remarks N/A
LOAD:LIST

Supported All
:MEMOry: LQAD: LI ST "<fil e name>"

This command loads a list sweep file.

*RST N/A
Range N/A
Key Entry Load From Selected File
Remarks N/A

Chapter 4 183

Command Reference
Memory Subsystem (:MEMory)

‘MOVE
Supported All
: MEMory: MOVE "<src_file>","<dest file>"

This command renames the requested file in the memory catalog.

*RST N/A

Range N/A

Key Entry Rename File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:STATe:COMMent
Supported All

: MEMory: STATe: COMMENt <r eg_nun®, <seq_nune, " <comrent >"
: MEMory: STATe: COMent ? <r eg_nune, <seq_nune

This command allows you to add a descriptive comment to the saved state
<reg_num>,<seq_num>. Comments can be up to 55 characters long.

*RST N/A
Range N/A
Key Entry Add Comment To Seq[n] Reg[nn]
Remarks N/A
:STORe:LIST

Supported All
: MEMory: STORe: LI ST "<fil e name>"

This command stores the current list sweep data to a file.

*RST N/A
Range N/A
Key Entry Store To File
Remarks N/A

184 Chapter 4

Command Reference
Mass Memory Subsystem (:MMEMory)

Mass Memory Subsystem (:MMEMory)

:CATalog
Supported

All

: MVEMory: CATal 0g? " <nsus>"

This command outputs a list of the files from the specified file system.

The variable "<msus>" (mass storage unit specifier) represents "<file system>:". The file
systems and types are shown in Table 4-4.

Table 4-4
File System File Type
BINARY BIN
LIST LIST (sweep list file)
STATE STAT
USERFLAT UFLT (user flatness file)

The return data will be in the following form:

<mem used>, <nem free>{, "<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the specified file system. Each file listing will be in the

following format:

"<file nane,file type,file size>"

*RST
Range
Key Entry

Remarks

N/A
N/A

Binary List State User Flatness

Refer to “MSUS (Mass Storage Unit Specifier) Variable” on page 151
for information on the use of the "<msus>" variable.

Chapter 4

185

Command Reference
Mass Memory Subsystem (:MMEMory)

:.COPY
Supported All
: MMEMDry: GCPY "<file nane>","<file name>"

This command makes a duplicate of the requested file.

*RST N/A

Range N/A

Key Entry Copy File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

‘DATA
Supported All

: MVEMDry: DATA "<fil e nane>", <dat abl ock>
: MVEMDry: DATA? "<file nane>"

This command loads <datablock> into the memory location "<file name>". The query
returns the <datablock> associated with the "<file name>".

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

186 Chapter 4

Command Reference
Mass Memory Subsystem (:MMEMory)

:DELete[:NAME]
Supported All
: MMEMDry: DELet e[: NAME] "<fil e name>",["<nsus>"]

This command clears the user file system of "<file name>" with the option of specifying
the file system separately.

The variable "<msus>" (mass storage unit specifier) represents "<file system>:". For a
list of the file systems refer to Table 4-4 on page 185.

*RST N/A

Range N/A

Key Entry Delete File

Remarks If the optional variable "<msus>" is omitted, the file name needs to

include the file system extension. Refer to “File Name Variables” on
page 150 and “MSUS (Mass Storage Unit Specifier) Variable” on
page 151 for information on the use of the file variables.

'LOAD:LIST
Supported All
:MVEMDry: LQAD: LI ST "<fil e name>"

This command loads a list sweep file.

*RST N/A
Range N/A
Key Entry Load From Selected File
Remarks N/A

Chapter 4 187

Command Reference
Mass Memory Subsystem (:MMEMory)

‘MOVE
Supported All
: MMEMOry: MOVE "<src_file>","<dest file>"

This command renames the requested file in the memory catalog.

*RST N/A

Range N/A

Key Entry Rename File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:STORe:LIST
Supported All
: MVEMDry: STCRe: LI ST "<fil e name>"

This command stores the current list sweep data to a file.

*RST N/A
Range N/A
Key Entry Store To File
Remarks N/A

188 Chapter 4

Command Reference
Output Subsystem(:OUTPut)

Output Subsystem(:OUTPut)

:MODulation[:STATe]

Supported

PSG-A Series

: QUTPut : MCDul ati on[: STATe] ON CFF| 1] 0
: QUTPut : MCDul ati on[: STATe] ?

This command enables or disables the modulation of the RF output with the currently
active modulation type(s).

*RST
Choices

Key Entry

Remarks

[:STATe]

Supported

1
ON OFF 1 O
Mod On/Off

Most modulation types can be simultaneously enabled except FM with
dM.

An annunciator on the signal generator is always displayed to indicate
whether modulation is switched on or off.

All

: QUTPut [: STATe] ON CFF| 1|0
: QUTPuUt [: STATe] ?

This command enables or disables the RF output.

*RST
Choices

Key Entry

Remarks

0
ON OFF 1 O
RF On/Off

Although you can configure and engage various modulations, no signal
is available at the RF OUTPUT connector until this command is
executed.

An annunciator is always displayed on the signal generator to indicate
whether the RF output is switched on or off.

Chapter 4

189

Command Reference
Status Subsystem (:STATus)

Status Subsystem (:STATuS)

:OPERation:CONDition

Supported

All

: STATus: CPERati on: CONDi ti on?

This command returns the decimal sum of the bits for the registers that are set to one
and are part of the Standard Operation Status Group. For example, if a sweep is in
progress (bit 3), the value 8 is returned.

*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Standard Operation Condition Register” on page 118 for more
information.

The data in this register is continuously updated and reflects current
conditions.

:OPERation:ENABIe

Supported

All

: STATus: CPERat i on: ENAB| e <val ue>
: STATus: CPERat i on: ENAB| e?

This command determines what bits in the Standard Operation Event Register will set
the Standard Operation Status Summary bit (bit 7) in the Status Byte Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Status Group” on page 117 and
“Standard Operation Event Enable Register” on page 119 for more
information.

190 Chapter 4

Command Reference
Status Subsystem (:STATus)

:OPERation:NTRansition

Supported All

: STATus: CPERat i on: NTRansi ti on <val ue>
: STATus: CPERat i on: NTRansi ti on?

This command determines what bits in the Standard Operation Condition Register will
set the corresponding bit in the Standard Operation Event Register when that bit has a
negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Status Group” on page 117 for more

information.

:OPERation:PTRansition

Supported All

: STATus: CPERat i on: PTRansi ti on <val ue>
: STATus: CPERat i on: PTRansi ti on?

This command determines what bits in the Standard Operation Condition Register will
set the corresponding bit in the Standard Operation Event Register when that bit has a
positive transition (0O to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Status Group” on page 117 for more

information.

Chapter 4 191

Command Reference
Status Subsystem (:STATus)

:OPERation[:EVENTt]

Supported

All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

: STATus: CPERat i on[: EVEN] ?

This command returns the decimal sum of the bits in the Standard Operation Event
Register. For example, if a sweep is in progress (bit 3), the value 8 is returned.

*RST
Range
Key Entry

Remarks

‘PRESet

Supported
: STATus: PRESet

N/A
0-32767
N/A

Refer to “Standard Operation Status Group” on page 117 and
“Standard Operation Event Register” on page 119 for more
information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

All

This command presets all transition filters, enable registers, and error/event queue

enable registers.

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to Table 3-2 on page 109 for the status preset register values and
types.
192 Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:CALibration:CONDition

Supported

PSG-A Series

: STATus: QUESt i onabl e: CALi brati on: CONDi ti on?

This command returns the decimal sum of the bits in the Data Questionable Calibration
Condition Register. For example, if the DCFM or DC®M zero calibration fails (bit 0), a
value of 1 is returned.

*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Calibration Status Group” on page 133
and “Data Questionable Calibration Condition Register” on page 134
for more information.

The data in this register is continuously updated and reflects the
current conditions.

:QUEStionable:CALibration:ENABIe

Supported

PSG-A Series

: STATus: QUESt i onabl e: CALi brati on: ENABlI e <val ue>
: STATus: QUESt i onabl e: CALi br at i on: ENABI e?

This command determines what bits in the Data Questionable Calibration Event
Register will set the calibration summary bit (bit 8) in the Data Questionable Condition

Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Calibration Status Group” on page 133
and “Data Questionable Calibration Event Enable Register” on
page 135 for more information.

Chapter 4

193

Command Reference
Status Subsystem (:STATus)

:QUEStionable:CALibration:NTRansition

Supported PSG-A Series

: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on <val ue>
: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on?

This command determines what bits in the Data Questionable Calibration Condition
Register will set the corresponding bit in the Data Questionable Calibration Event
Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to
enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Calibration Status Group” on page 133 for

more information.

:QUEStionable:CALibration:PTRansition

Supported PSG-A Series

: STATus: QUESt i onabl e: CALi brati on: PTRansi ti on <val ue>
: STATus: QUESt i onabl e: CALi brati on: PTRansi ti on?

This command determines what bits in the Data Questionable Calibration Condition
Register will set the corresponding bit in the Data Questionable Calibration Event
Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to
enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Calibration Status Group” on page 133 for

more information.

194

Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUESTtionable:CALibration[:EVENTt]

Supported

PSG-A Series

CAUTION

This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

: STATus: QUESt i onabl e: CALi bration[: EVEN]?

This command returns the decimal sum of the bits in the Data Questionable Calibration
Event Register. For example, if the DCFM or DC®M zero calibration has failed, bit 0 will
return a value of 1.

*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Calibration Status Group” on page 133
and “Data Questionable Calibration Event Register” on page 134 for
more information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

:QUEStionable:CONDition

Supported

All

: STATus: QUESti onabl e: CONDi ti on?

This command returns the decimal sum of the bits in the Data Questionable Condition
Register. For example, if the reference oscillator oven is cold (bit 4), a value of 16 is

returned.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Condition Register” on page 121 for more information.

The data in this register is continuously updated and reflects current
conditions.

Chapter 4

195

Command Reference
Status Subsystem (:STATus)

:QUEStionable:ENABIe

Supported

All

: STATus: QUESt i onabl e: ENABI e <val ue>
: STATus: QUESt i onabl e: ENABI e?

This command determines what bits in the Data Questionable Event Register will set
the Data Questionable Status Group Summary bit (bit 3) in the Status Byte Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Event Enable Register” on page 123 for more
information.

:QUEStionable:FREQuency:CONDition

Supported

All

: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

This command returns the decimal sum of the bits in the Data Questionable Frequency
Condition Register. For example, if the 1 GHz internal reference clock is unlocked (bit 2),
a value of 4 is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Frequency Status Group” on page 127 and
“Data Questionable Frequency Condition Register” on page 128 for
more information.
The data in this register is continuously updated and reflects current
conditions.

196 Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:FREQuency:ENABIe

Supported

All

: STATus: QUESt i onabl e: FREQuency: ENABl e <val ue>
: STATus: QUESt i onabl e: FREQuency: ENAB| e?

This command determines what bits in the Data Questionable Frequency Event Register
will set the frequency summary bit (bit 5) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Frequency Status Group” on page 127 and
“Data Questionable Frequency Event Enable Register” on page 129 for
more information.

:QUEStionable:FREQuency:NTRansition

Supported

All

: STATus: QUESt i onabl e: FREQuency: NTRansi ti on <val ue>
: STATus: QUESt i onabl e: FREQuency: NTRansi ti on?

This command determines what bits in the Data Questionable Frequency Condition
Register will set the corresponding bit in the Data Questionable Frequency Event
Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Frequency Status Group” on page 127 for
more information.

Chapter 4

197

Command Reference
Status Subsystem (:STATus)

:QUEStionable:FREQuency:PTRansition

Supported All

: STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue>
: STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

This command determines what bits in the Data Questionable Frequency Condition
Register will set the corresponding bit in the Data Questionable Frequency Event
Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Frequency Status Group” on page 127 for

more information.

198 Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:FREQuency[:EVENTt]

Supported

All

CAUTION

This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

This command returns the decimal sum of the bits in the Data Questionable Frequency
Event Register. For example, if the 1 GHz internal reference clock is unlocked (bit 2), a
value of 4 is returned.

*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Frequency Status Group” on page 127 and
“Data Questionable Frequency Event Register” on page 129 for more
information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

:QUEStionable:MODulation:CONDition

Supported

PSG-A Series

: STATus: QUESt i onabl e: MCDul at i on: CONDi ti on?

This command returns the decimal sum of the bits in the Data Questionable Modulation
Condition Register.

*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Modulation Status Group” on page 130
and “Data Questionable Modulation Condition Register” on page 131
for more information.

The data in this register is continuously updated and reflects current
conditions.

Chapter 4

199

Command Reference
Status Subsystem (:STATus)

:QUEStionable:MODulation:ENABIe

Supported PSG-A Series

: STATus: QUESt i onabl e: MODul at i on: ENABl e <val ue>
: STATus: QUESt i onabl e: MCODul at i on: ENABI e?

This command determines what bits in the Data Questionable Modulation Event
Register will set the modulation summary bit (bit 7) in the Data Questionable Condition

Register.

The variable <value> is the sum of the decimal values of the bits that you want to
enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130

and “Data Questionable Modulation Event Enable Register” on
page 132 for more information.

:QUEStionable:MODulation:NTRansition

Supported PSG-A Series

: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on <val ue>
: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on?

This command determines what bits in the Data Questionable Modulation Condition
Register will set the corresponding bit in the Data Questionable Modulation Event
Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130 for

more information.

200 Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:MODulation:PTRansition

Supported PSG-A Series

: STATus: QUESt i onabl e: MODul at i on: PTRansi ti on <val ue>
: STATus: QUESt i onabl e: MCDul at i on: PTRansi ti on?

This command determines what bits in the Data Questionable Modulation Condition
Register will set the corresponding bit in the Data Questionable Modulation Event
Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130 for

more information.

Chapter 4 201

Command Reference
Status Subsystem (:STATus)

:QUEStionable:MODulation[:EVENTt]
Supported PSG-A Series

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

: STATus: QUESt i onabl e: MODul ation[: EVENt] ?

This command returns the decimal sum of the bits in the Data Questionable Modulation
Event Register. For example, if EXT[1] with ac-coupling is selected and the modulation is
enabled with no signal connected, a Modulation 1 Undermod condition exists (bit 0) and
a value of 1 is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130

and “Data Questionable Modulation Event Register” on page 132 for
more information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

202 Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:NTRansition

Supported

All

: STATus: QUESt i onabl e: NTRansi ti on <val ue>
: STATus: QUESt i onabl e: NTRansi ti on?

This command determines what bits in the Data Questionable Condition Register will
set the corresponding bit in the Data Questionable Event Register when that bit has a
negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Transition Filters (negative and positive)” on page 122
for more information.

:QUEStionable:POWer:COND:ition

Supported

All

: STATus: QUESt i onabl e: POMr: CONDi ti on?

This command returns the decimal sum of the bits in the Data Questionable Power
Condition Register. For example, if the RF output signal is unleveled (bit 1), a value of 2

is returned.
*RST
Range
Key Entry

Remarks

N/A
0-32767
N/A

Refer to “Data Questionable Power Status Group” on page 124 and
“Data Questionable Power Condition Register” on page 125 for more
information.

The data in this register is continuously updated and reflects current
conditions.

Chapter 4

203

Command Reference
Status Subsystem (:STATus)

:QUEStionable:POWer:ENABIe

Supported All

: STATus: QUESt i onabl e: POMr : ENABI e <val ue>
: STATus: QUESt i onabl e: PO/Mr : ENABI e?

This command determines what bits in the Data Questionable Power Event Register will
set the power summary bit (bit 3) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to
enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Power Status Group” on page 124 and

“Data Questionable Power Event Enable Register” on page 126 for
more information.

:QUEStionable:POWer:NTRansition

Supported All

: STATus: QUESt i onabl e: POMr: NTRansi ti on <val ue>
: STATus: QUESt i onabl e: POMr : NTRansi ti on?

This command determines what bits in the Data Questionable Power Condition Register
will set the corresponding bit in the Data Questionable Power Event Register when that
bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to
enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to“Data Questionable Power Status Group” on page 124 for more
information.

204

Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:POWer:PTRansition

Supported All

: STATus: QUESt i onabl e: POMr : PTRansi ti on <val ue>
: STATus: QUESt i onabl e: POMr : PTRansi ti on?

This command determines what bits in the Data Questionable Power Condition Register
will set the corresponding bit in the Data Questionable Power Event Register when that
bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Power Status Group” on page 124 for more

information.

Chapter 4 205

Command Reference
Status Subsystem (:STATus)

‘QUEStionable:POWer[:EVENTt]
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

: STATus: QUESt i onabl e: POMr[: EVEN] ?

This command returns the decimal sum of the bits in the Data Questionable Power
Event Register. For example, if the RF output signal is unleveled (bit 1), a value of 2 is

returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Power Status Group” on page 124 and
“Data Questionable Power Event Register” on page 126 for more
information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

206 Chapter 4

Command Reference
Status Subsystem (:STATus)

:QUEStionable:PTRansition

Supported All

: STATus: QUESt i onabl e: PTRansi ti on <val ue>
: STATus: QUESt i onabl e: PTRansi ti on?

This command determines what bits in the Data Questionable Condition Register will
set the corresponding bit in the Data Questionable Event Register when that bit has a
positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data

Questionable Transition Filters (negative and positive)” on page 122
for more information.

:QUEStionable[:EVENTt]
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
gueried. Once queried, the data is cleared.

: STATus: QUESti onabl e[: EVEN] ?

This command returns the decimal sum of the bits in the Data Questionable Event
Register. For example, if the signal generator has just been connected to the line power
and the reference oscillator oven is cold (bit 4), a value of 16 is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data

Questionable Event Register” on page 122 for more information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

Chapter 4 207

Command Reference
System Subsystem (:SYSTem)

System Subsystem (:SYSTem)

:CAPability

Supported All
: SYSTem CAPabi | i ty?

This command queries the signal generator’s capabilities and outputs the appropriate
specifiers:

(RFSOURCE W TH((AM FM PULM PM LFO) & FSSWEEP| FLI ST) & PSSWEEP| PLI ST)
&TR GEER&REFERENCE))

This is a list of the SCPI-defined basic functionality of the signal generator and the
additional capabilities it has in parallel (a&b) and singularly (a|b).

*RST N/A

Range N/A
Key Entry N/A
Remarks N/A

‘ERROr[:NEXT]

Supported All
: SYSTem ERRor [: NEXT] ?

This command queries the signal generator’s error queue and displays the error message
when available. If there are no error messages, the query returns the following output:

+0,"No error"”

When there is more than one error message, the query will need to be sent for each
message.

*RST N/A

Range N/A

Key Entry Error Info View Next Error Message

Remarks The error messages are erased after being queried.

208

Chapter 4

Command Reference
System Subsystem (:SYSTem)

‘HELP:MODE

Supported All

: SYSTem HELP: MODE SI NQ e| CONTi nhuous
: SYSTem HELP: MCDE?

This command sets the mode of the signal generator’s help function.
SINGIe Help is provided only for the next key that you press.

CONTinuous Help is continuously provided for the next key and subsequent keys
you press. In addition, the key’s function is executed.

Pressing the Help hardkey in either mode, while the help dialog box is displayed, will

turn help off.

*RST N/A

Choices SINGle CONTinuous

Key Entry Help Mode Single Cont

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

Chapter 4 209

Command Reference
System Subsystem (:SYSTem)

‘PON:TYPE

Supported

All

: SYSTem PO\ TYPE PRESet | LAST
: SYSTem PON TYPE?

This command sets the defined conditions for the signal generator at power on.

PRESet This choice sets the conditions to factory- or user-defined as determined by
the choice for the preset type. Refer to “:PRESet: TYPE” on page 212 for
selecting the type of preset.

LAST This choice retains the settings at the time the signal generator was last
powered down.

NOTE When LAST is selected, no signal generator interaction can occur for at
least 3 seconds prior to cycling the power for the current settings to be
saved.

*RST N/A

Choices PRESet LAST

Key Entry Power On Last Preset

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.
‘PRESet
Supported All
SYSTem PRESet

This command returns the signal generator to a set of defined conditions. It is equivalent
to pressing the front panel Preset hardkey.

*RST N/A
Range N/A
Key Entry Preset
Remarks The defined conditions are either factory- or user-defined. Refer to
“:PRESet:TYPE” on page 212 for selecting the type of defined
conditions.
210 Chapter 4

Command Reference
System Subsystem (:SYSTem)

‘PRESet:ALL

Supported All
: SYSTem PRESet : ALL

This command sets all states of the signal generator back to their factory default
settings, including states that are not normally affected by signal generator power-on,
preset, or *RST.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

‘PRESet:PERSistent
Supported All
: SYSTem PRESet : PERSI st ent

This command sets the states that are not affected by signal generator power-on, preset,
or *RST to their factory default settings.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

Chapter 4 211

Command Reference

System Subsystem (:SYSTem)

:PRESet: TYPE
Supported

All

: SYSTem PRESet : TYPE NCRMal | USER
: SYSTem PRESet : TYPE?

This command toggles the preset state between factory- and user-defined conditions.

*RST
Choices

Key Entry

Remarks

N/A
NORMal USER
Preset Normal User

Refer to “:PRESet[:USER]:SAVE” for saving the USER choice preset
settings.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

‘PRESet[:USER]:SAVE

Supported

All

: SYSTem PRESet [: USER] : SAVE

This command saves your user-defined preset conditions to a state file.

*RST N/A
Range N/A
Key Entry Save User Preset
Remarks Only one user-defined preset file can be saved. Subsequent saved
user-defined preset files will overwrite the previously saved file.
212 Chapter 4

:SSAVer:DELay

Supported

Command Reference
System Subsystem (:SYSTem)

All

: SYSTem SSAVer : DELay <val >
: SYSTem SSAVer : DELay?

This command sets the amount of time before the display light or display light and text
is switched off. This will occur if there is no input via the front panel during the delay

period.

The variable <val > is a whole number measured in hours.

*RST
Range
Key Entry

Remarks

:SSAVer:MODE
Supported

N/A
1-12
Screen Saver Delay:

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

Refer to “:SSAVer:MODE” on page 213 for selecting the screen saver
mode.

All

: SYSTem SSAVer : MODE LI GH | TEXT
: SYSTem SSAVer : MCDE?

This command toggles the screen saver mode between light only or light and text.

LIGHT

TEXT

*RST
Choices

Key Entry

Remarks

This choice enables only the light to turn off during the screen
saver operation while leaving the text visible on the darkened
screen.

This choice enables both the display light and text to turn off
during the screen saver operation.

N/A
LIGHt TEXT
Screen Saver Mode

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

Chapter 4

213

Command Reference
System Subsystem (:SYSTem)

:SSAVer:STATe

Supported All

: SYSTem SSAVer : STATe ON| OFF| 1] 0
: SYSTem SSAVer : STATe?

This command enables or disables the display screen saver.

*RST N/A

Choices ON OFF 1 0

Key Entry Screen Saver Off On

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

'VERSIion

Supported All
: SYSTem VERSI on?

This command returns the SCPI version number with which the signal generator

complies.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

214 Chapter 4

Command Reference
Trigger Subsystem

Trigger Subsystem

‘ABORt

Supported

: ABCR

All

This command causes the list or step sweep in progress to abort.

*RST
Range
Key Entry

Remarks

N/A
N/A
N/A

If I NI T: QONT[: ALL] is set to ON, the sweep will immediately
re-initiate.

The pending operation flag affecting * CPC, * QPC?, and *WAl will
undergo a transition once the sweep has been reset.

!INITiate:CONTinuous[:ALL]

Supported

All

;I NI'Ti at e; CONTi nuous|[: ALL] ON CFF| 1] 0
:I' NITi at e: CONTi nuous[: ALL] ?

This command selects either a continuous or single list or step sweep.

ON (1) This choice selects continuous sweep where, after the completion of the
previous sweep, the current sweep will restart automatically or wait
until the appropriate trigger source is received.

OFF (0) This choice selects a single sweep. Refer to
“INITiate[:IMMediate][:ALL]” on page 216 for single sweep triggering
information.

*RST 0
Choices ON OFF 1 0
Key Entry Sweep Repeat Single Cont
Remarks Execution of this command will not affect a sweep in progress.
Chapter 4 215

Command Reference
Trigger Subsystem

‘INITiate[:IMMediate][:ALL]

Supported All

INTiate[: 1 Mdi ate][: ALL]

This command arms or arms and starts a single list or step sweep.

The following list demonstrates the behavior of this command:

= arms a single sweep when BUS, EXTernal, or KEY is the trigger source selection

= arms and starts a single sweep when IMMediate is the trigger source selection
*RST N/A

Range N/A
Key Entry Single Sweep
Remarks Refer to “:INITiate:CONTinuous[:ALL]" on page 215 for setting

continuous or single sweep

This command is ignored if a sweep is in progress.

‘TRIGger:OUTPut:POLarity

Supported All
: TR Gger: QJTPut : PCLarity PCSitive| NEGati ve
: TR Gger: QUTPut : PCLari ty?

This command sets the polarity of the TTL signal present at the TRIGGER OUT
connector.

*RST POS

Choices POSitive NEGative

Key Entry Trigger Out Polarity Neg Pos

Remarks The trigger out is asserted after the frequency and/or power is set

while the sweep is waiting for its step trigger. In addition, the
swept-sine sends a pulse to the TRIGGER OUT at the beginning of
each sweep.

216

Chapter 4

Command Reference
Trigger Subsystem

‘TRIGger[:SEQuence]:SLOPe
Supported All

: TR Gger [: SEQuence] : SLOPe PCSitive| NEGati ve
: TR Gger [: SEQuence] : SLCPe?

This command sets the polarity of the ramp or sawtooth waveform slope present at the
TRIGGER IN connector that will trigger a list or step sweep.

*RST POS

Choices POSitive NEGative
Key Entry Trigger In Polarity Neg Pos
Remarks N/A

‘TRIGger[:SEQuence]:SOURce
Supported All
: TR Gger [: SEQuence] : SOURce BUS| | Medi at e| EXTer nal | KEY
: TR ger [: SEQuence] : SOURce?
This command sets the sweep trigger source for a list or step sweep.

BUS This choice enables GPIB triggering using the * TRGor GET command or
LAN triggering using the * TRGcommand.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus Free Run Ext Trigger Key
Remarks The wait for the BUS, EXTernal, or KEY trigger can be bypassed by

sending the : TR Gger [: SEQuence] [: | Mvedi at e] command.

Chapter 4 217

Command Reference
Trigger Subsystem

‘- TRIGger[:SEQuence][:IMMediate]
Supported All
: TR Gger [: SEQuence] [: | Mviedi at e]

This event command enables an armed list or step sweep to immediately start without
the selected trigger occurring.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

218 Chapter 4

Command Reference
Unit Subsystem (:UNIT)

Unit Subsystem (:UNIT)

‘POWer

Supported

All

- UNI T: POAér DBM DBUV| DBUVEMF| V| VEMF

:UNIT: PONer ?

This command terminates an amplitude value in the selected unit of measure.

*RST
Choices
Key Entry

Remarks

DBM
DBM DBUV DBUVEMF V VEMF
dBm dBuV dBuVemf mV uV mVemf uVemf

All power values in this chapter are shown with DBM as the unit of
measure. If a different unit of measure is selected, replace DBM with
the newly selected unit whenever it is indicated for the value.

Chapter 4

219

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

Amplitude Modulation Subsystem ([:SOURce])

:AM[1]]2...
Supported PSG-A Series
[:SOURce]: AM 1] 2. ..

This prefix enables the selection of the AM path and is part of most SCPI commands
associated with this subsystem. The two paths are equivalent to the AM Path 1 2 softkey.

AMI[1] AM Path 1 2 with 1 selected
AM2 AM Path 1 2 with 2 selected

When just AM is shown in a command, this means the command applies globally to both
paths.

Each path is set up separately. When a SCPI command uses AM[1], only path one is
affected. Consequently, when AM2 is selected, only path two is set up. However, the
depth of the signals for the two paths can be coupled.

Depth coupling links the depth value of AM[1] to AM2. Changing the deviation value for
one path will change it for the other path.

These two paths can be on at the same time provided the following conditions have been
met:

= DUALsine or SWEPtsine is not the selection for the waveform type

= each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

220 Chapter 4

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM:INTernal:FREQuency:STEP[:INCRement]
Supported PSG-A Series

[SOURce] : AM | NTer nal : FREQuency: STEP[: | NCRenent] <nun®
[SOURce] : AM | NTer nal : FREQuency: STEP[: | NCRenent | ?

This command sets the step increment for the amplitude modulation internal frequency.

The variable <num> sets the entered value in units of hertz.

*RST N/A

Range 0.5-1E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the AM frequency setting. Refer to
“:AM[1]]2:INTernal[1]] 2:FREQuency” on page 226 for more
information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

Chapter 4 221

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM:MODE

Supported PSG-A Series

[: SQURce] : AM MCDE DEEP| NCRval

[: SQURce] : AM MCDE?

This command sets the mode for the amplitude modulation.

DEEP This choice enables the amplitude modulation depth greater dynamic
range with the ALC enabled. The minimum carrier amplitude with this
choice is —=10 dBm. DEEP has no specified parameters and emulates the
amplitude modulation NORMal mode with the ALC disabled.

NORMal This choice maintains the amplitude modulation standard behavior and
has specified parameters as outlined in the data sheet.

*RST NORM

Choices DEEP NORMal

Key Entry AM Mode Normal Deep

Remarks The ALC will passively disable when the carrier amplitude is less than

-10 dBm and DEEP is the AM mode.

DEEP is limited to repetitive AM and will not work with a dc
modulation signal.

222 Chapter 4

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]]2:EXTernal[1]]2:COUPIing
Supported PSG-A Series

[: SOURce]: AM 1] | 2: EXTernal [1] | 2: COUPl i ng AC DC
[SOURce]: AM 1] | 2: EXTernal [1] | 2: COUPI i ng?

This command sets the coupling for the amplitude modulation source through the
selected external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Choices AC DC
Key Entry Ext Coupling DC AC
Remarks The command does not change the currently active source or switch the

current modulation on or off. The modulating signal may be the sum of
several signals, either internal or external sources.

‘AM[1]]2:EXTernal[1]]2:IMPedance

Supported PSG-A Series

[SOURce] : AM 1] | 2: EXTer nal [1] | 2: | MPedance <50| 600>
[: SOURce] : AM 1] | 2: EXTer nal [1] | 2: | MPedance?

This commands sets the impedance for the selected external input.

*RST +5.00000000E+001

Choices 50 600

Key Entry Ext Impedance 50 Ohm 600 Ohm
Remarks N/A

Chapter 4 223

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

‘AM[1]]2:INTernal[1]:FREQuency:ALTernate

Supported PSG-A Series

[SOURce] : AM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e <val ><uni t >
[SOURce] : AM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e?

This command sets the frequency for the alternate signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.5HZ-1MHZ Swept-Sine: 1HZ-1MHZ

Key Entry AM Tone 2 Rate AM Stop Rate

Remarks The alternate signal frequency is the second tone of a dual-sine or the

stop frequency of a swept-sine waveform.

Refer to “:AM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 227 for
the waveform selection.

‘AM[1]]2:INTernal[1]:FREQuency:ALTernate:AMPLIitude:PERCent

Supported PSG-A Series

[: SOURce] : AM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e: AMPLI t ude:
PERCent <val ><uni t >
[: SOURce] : AM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e: AMPLI t ude: PERCent ?

This command sets the amplitude of the second tone for a dual-sine waveform as a
percentage of the total amplitude. For example, if the second tone makes up 30% of the
total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry AM Tone 2 Ampl Percent Of Peak

Remarks Refer to “:AM[1]] 2:INTernal[1]]| 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

224

Chapter 4

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

‘AM[1]]2:INTernal[1]:SWEep:RATE
Supported PSG-A Series

[SOURce] : AM 1] | 2: I NTer nal [1] : SWEep: RATE <val ><uni t >
[SOURce] : AM 1] | 2: I NTer nal [1] : SWEep: RATE?

This command sets the sweep rate for the amplitude-modulated, swept-sine waveform.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry AM Sweep Rate

Remarks Refer to “:AM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

‘AM[1]]2:INTernal[1]:SWEep:TRIGger
Supported PSG-A Series
[SOURce] : AM 1] | 2: I NTer nal [1] : SWeep: TR Gger BUS| | Mvedi at e| EXTer nal | KEY
[SOURce] : AM 1] | 2: I NTer nal [1] : SWeep: TR (ger ?

This command sets the trigger source for the amplitude modulated swept-sine
waveform.

BUS This choice enables GPIB triggering using the * TRGor GET command or
LAN triggering using the * TRGcommand.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus Free Run Ext Trigger Key
Remarks Refer to “:AM[1]] 2:INTernal[1] | 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

Chapter 4 225

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]]2:INTernal[1]]| 2:FREQuency

Supported PSG-A Series

[: SQURce] : AM 1] | 2: I NTernal [1] | 2: FREQuency <val ><uni t >| UP| DOMN
[SOURce] : AM 1] | 2: I NTer nal [1] | 2: FREQuency?

This command sets the internal amplitude modulation rate for the following
applications:

= the first tone of a dual-sine waveform
= the start frequency for a swept-sine waveform

= the frequency rate for all other waveforms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.5HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.5HZ-100kHZ
Choices <val><unit> UP DOWN
Key Entry AM Tone 1 Rate AM Start Rate AM Rate
Remarks Refer to “:AM:INTernal:FREQuency:STEP[:INCRement]” on page 221

for setting the value associated with the UP and DOWN choices.

Refer to “:AM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 227 for
the waveform selection.

‘AM[1]]2:INTernal[1]]2:FUNCtion:NOISe

Supported PSG-A Series

[: SOURce]: AM 1] | 2: I NTernal [1] | 2: FUNCt i on: NO Se GAUSsi an| UNI For m
[SOURce]: AM 1] | 2: I NTernal [1] | 2: FUNCt i on: NO Se?

This commands sets the noise type when NOISe is the waveform choice.

*RST UNIF

Choices GAUSsian UNIForm

Key Entry Gaussian Uniform

Remarks Refer to “:AM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

226

Chapter 4

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

‘AM[1]]2:INTernal[1]] 2:FUNCtion:RAMP
Supported PSG-A Series

[:SOURce]: AM 1] | 2: I NTernal [1] | 2: FUNCt i on: RAMP POSitive| NEGati ve
[SOURce]: AM 1] | 2: I NTernal [1] | 2: FUNCt i on: RAMP?

This command sets the slope type for the ramp modulated waveform.

*RST POS

Choices POSitive NEGative

Key Entry Positive Negative

Remarks Refer to “:AM[1]] 2:INTernal[1] | 2:FUNCtion:SHAPe” for the

waveform selection.

:AM[1]]2:INTernal[1]] 2:FUNCtion:SHAPe

Supported PSG-A Series

[SOURce]: AM 1] | 2: I NTernal [1] | 2: FUNCt i on: SHAPe SI NE| TR angl e| SQUar e|
RAMP| NO Se| DUALSsI ne| SWEPt si ne
[SOURce]: AM 1] | 2: I NTernal [1] | 2: FUNCt i on: SHAPe?

This command sets the AM waveform type.

*RST SINE

Choices SINE TRIlangle SQUare RAMP NOISe DUALsine SWEPtsine
Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Remarks The INTernal2 source selection does not support the DUALsine and

SWEPtsine waveform choices.

Chapter 4 227

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]]2:SOURce

Supported PSG-A Series
[SOURce]: AM 1] | 2: SOURce | NT[1] | | NT2| EXT[1] | EXT2
[SOURce] : AM 1] | 2: SOURce?
This command sets the source to generate the amplitude modulation.
INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to
provide an externally applied signal that can be ac- or dc-coupled.

*RST INT

Choices INT[1] INT2 EXT[1] EXT2
Key Entry Internal 1 Internal 2 Extl Ext2
Remarks A 1.0V, input is required for calibrated AM depth settings.

The externally applied, ac-coupled input signal is tested for a voltage
level and a display annunciator will report a high or low condition if
that voltage is > +3% of 1 V,,.

AM[1]]2:STATe

Supported PSG-A Series

[SOURce]: AM 1] | 2: STATe ON CFF| 1| O

[SOURce] : AM 1] | 2: STATe?

This command enables or disables the amplitude modulation for the selected path.
*RST 0

Choices ON OFF 1 O
Key Entry AM Off On
Remarks The RF carrier is modulated when you have set the signal generator’s

modulation state to ON, see “:MODulation[:STATe]” on page 189 for
more information.

Whenever amplitude modulation is enabled, the AMannunciator is
turned on in the display

The two paths for amplitude modulation can be simultaneously
enabled. Refer to “:AM[1]]2...” on page 220 for more information.

228

Chapter 4

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]|2: TYPE
Supported PSG-A Series

[SOURce] : AM 1] | 2: TYPE LI Near | EXPonent i al
[SOURce] : AM 1] | 2: TYPE?

This command sets the measurement type and unit for the depth of the AM signal.
LINear This choice enables linear depth values in units of percent/volt.

EXPonential This choice enables exponential depth values in units of dB/volt.

*RST LIN

Choices LINear EXPonential
Key Entry AM Type LIN EXP
Remarks N/A

AM[1]]12[:DEPTh]:EXPonential
Supported PSG-A Series

[SOURce] : AM 1] | 2[: DEPTh] : EXPonenti al <val ><uni t >
[: SOURce] : AM 1] | 2[: DEPTh] : EXPonenti al ?

This commands sets the depth of the AM signal in units of dB/volt.

*RST +4.00000000E+001

Range 0.00-40.00DB

Key Entry AM Depth

Remarks EXPonential must be the current measurement choice for this

command to have any affect. Refer to “:AM[1]]2:TYPE” for setting the
AM measurement mode.

Chapter 4 229

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

‘AM[1]|2[:DEPThH][:LINear]
Supported PSG-A Series

[:SQURce] : AM 1] | 2[: DEPTh] [: LI Near] <val ><uni t >| UP| DOMN
[:SOURce]: AM 1] | 2[: DEPTh] [: LI Near] ?

This commands sets the depth of the AM signal.

*RST +1.00000000E-001

Range 0.0-100PCT

Choices <val> UP DOWN

Key Entry AM Depth

Remarks LINear must be the current measurement choice for this command to

have any affect. Refer to “:AM[1]]2: TYPE” on page 229 for setting the
AM measurement mode.

When the depth values are coupled, a change made to one path is
applied to both. Refer to “:AM[1]| 2[:DEPTh][:LINear]: TRACK” on
page 231 for AM depth value coupling.

Refer to “:AM[:DEPTh]:STEP[:INCRement]” on page 232 for setting
the value associated with the UP and DOWN choices.

230 Chapter 4

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

‘AM[1]|2[:DEPThH][:LINear]: TRACKk

Supported

PSG-A Series

[:SOURce]: AM 1] | 2[: DEPTh] [: LI Near]: TRACK ON OFF| 1| 0
[SOURce] : AM 1] | 2[: DEPTh] [: LI Near] : TRACK?

This command enables or disables the coupling of the AM depth values between the
paths (AM[1] and AM2).

ON (1)

OFF (0)

*RST
Choices

Key Entry

Remarks

This choice will link the depth value of AM[1] with AM2; AM2 will
assume the AM[1] depth value. For example, if AM[1] depth is set to 15%
and AM2 is set to 11%, enabling the depth tracking will cause the AM2
depth value to change to 15%. This applies regardless of the path (AM[1]
or AM2) selected in this command

This choice disables the coupling and both paths will have independent
depth values.

0
ON OFF 1 O
AM Depth Couple Off On

When the depth values are coupled, a change made to one path is
applied to both.

LINear must be the current unit of measure choice for this command to
have any affect. Refer to “:AM[1]]2: TYPE” on page 229 for setting the
AM measurement unit.

Chapter 4

231

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[:DEPTh]:STEP[:INCRement]

Supported PSG-A Series

[SQURce] : AM : DEPTh] : STEP] : | NCRerrent] <nun®
[SOURce] : AM : DEPTh] : STEP[: | NCRerrent | ?

This command sets the depth increment value for the LINear measurement choice.

The variable <num> sets the increment value in units of percent.

*RST N/A

Range 0.1-100

Key Entry Incr Set

Remarks Refer to “:AM[1]] 2:TYPE” on page 229 for setting the AM

measurement choice.

The value set by this command is used with the UP and DOWN choices
for the AM linear depth command. Refer to
“:AM[1]] 2[:DEPTh][:LINear]” on page 230 for more information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

232 Chapter 4

Command Reference
Correction Subsystem ([:SOURce]: CORRection)

Correction Subsystem ([:SOURce]:CORRection)

:FLATNess?
Supported All
[SOURce] : CCRRect i on: FLATness?

This command queries the user flatness correction file for the frequency and amplitude
values. The returned values will be in the following form:

<frequency>,<power correction>

The number of paired values returned will be the same as the number of correction
flatness points.

*RST N/A
Range N/A
Key Entry Configure Cal Array
Remarks N/A

‘FLATness:LOAD

Supported All
[SOURce] : CORRect i on: FLATness: LOAD "<fil e nane>"

This command loads a user flatness correction file.

*RST N/A
Range N/A
Key Entry Load From Selected File
Remarks N/A

Chapter 4 233

Command Reference
Correction Subsystem ([:SOURce]:CORRection)

‘FLATness:PAIR

Supported All
[: SOURce] : CORRect i on: FLATness:

PAIR <freg>[<freq suffix>], <corr>[<corr suffix>]
This command sets a frequency and amplitude correction pair.
*RST N/A
Range 20 GHz Models
Frequency: 100kHZ-20GHZ Correction (Std.): =20 to 25DB
Correction (Opt. 1E1): -135 to 25DB
40 GHz Models
Frequency: 100kHZ-40GHZ Correction (Std.): =20 to 25DB
Correction (Opt. 1E1): -135 to 25DB
Key Entry Configure Cal Array

Remarks The maximum number of points that can be entered is 1601.

‘FLATness:POINts?
Supported All
[SOURce] : CORRect i on: FLATness: PO Nt s?

This command queries the signal generator for the number of points in the user flatness
correction file.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

234 Chapter 4

Command Reference
Correction Subsystem ([:SOURce]: CORRection)

‘FLATness:PRESet
Supported All

CAUTION The current correction data will be overwritten once this command is
executed. Save the current data if needed. Refer to “:FLATness:STORe”
for storing user flatness files.

[SOURce] : CORRect i on: FLATness: PRESet

This command presets the user flatness correction to a factory-defined setting that
consists of one point.

*RST N/A

Range N/A

Key Entry Preset List

Remarks N/A
‘FLATNness:STORe

Supported All
[SOURce] : CORRect i on: FLATness: STCRe "<fil e nane>"

This command stores the current user flatness correction data to a file.

*RST N/A
Range N/A
Key Entry Store To File
Remarks N/A

Chapter 4 235

Command Reference
Correction Subsystem ([:SOURce]:CORRection)

[:STATe]

Supported All

[SOURce] : CORRecti on[: STATe] ONJ CFF| 1] 0
[SOURce] : CORRect i on[: STATe] ?

This command enables or disables the user flatness corrections.

*RST 0

Choices ON OFF 1 0
Key Entry Flatness Off On
Remarks N/A

236

Chapter 4

Command Reference
Frequency Subsystem ([:SOURce])

Frequency Subsystem ([:SOURce])

:FREQuency:FIXed

Supported All

[: SOURce] : FREQuency: FI Xed <val ><uni t >
[: SOURce] : FREQuency: FI Xed?

This command sets the RF output frequency.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Frequency
Remarks A frequency change may affect the current output power. Refer to

“:POWer[:LEVel][:IMMediate][:AMPL.itude]” on page 287 for the
correct specified frequency and amplitude settings.

'FREQuency:MODE
Supported All

[SOURce] : FREQuency: MODE CW FI Xed| LI ST
[1 SOURce] : FREQuency: MODE?

This command sets the frequency mode of the signal generator.
CW and FIXed These choices are synonymous with one another and they let the

signal generator operate at a fixed frequency. Refer to
“'FREQuency[:CW]” on page 241 for setting the frequency.

LIST This choice lets the currently selected sweep (LIST or STEP)
frequency settings control the output frequency. Refer to
“LIST:-TYPE” on page 260 for setting the sweep type.

*RST CwW

Choices CW FIXed LIST
Key Entry Frequency Freq
Remarks N/A

Chapter 4 237

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency:MULTiplier
Supported All

[SOURce] : FREQuency: MULTi plier <val >
[SOURce] : FREQuency: MULTi pli er?

This command sets the multiplier for the signal generator’s carrier frequency.

*RST +1

Range Negative Values: —1000 to —.001 Positive Values: .001-1000

Key Entry Freq Multiplier

Remarks For any multiplier other than one, the MLT indicator is shown in the

frequency area of the display.

:FREQuency:OFFSet

Supported All

[SOURce] : FREQuency: OFFSet <val ><uni t >
[1 SOURce] : FREQuency: OFFSet ?

This command sets the frequency offset.

*RST +0.0000000000000E+00

Range 20 GHz Models: 0HZ-20GHZ 40 GHz Models: 0HZ—40GHZ

Key Entry Freq Offset

Remarks A frequency offset can be entered at any time during normal operation

and when you are operating in frequency reference mode.

When an offset has been entered, the CFFS indicator is turned on in the
frequency area of the display.

The frequency offset state is turned on when any non-zero value is
entered; entering zero will turn it off. Refer to
“FREQuency:OFFSet:STATe” on page 239 for setting the offset state
independent of entering offset values.

238 Chapter 4

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency:OFFSet:STATe

Supported All

[1 SOURce] : FREQuency: OFFSet : STATe ON CFF| 1] 0
[SOURce] : FREQuency: OFFSet : STATe?

This command enables or disables the offset frequency.

*RST 0

Choices ON OFF 1 O

Key Entry Freq Offset

Remarks Entering OFF (0) will set the frequency offset to 0 Hz.

:FREQuency:REFerence

Supported All

[1 SOURce] : FREQuency: REFer ence <val ><uni t >
[1 SOURce] : FREQuency: REFer ence?

This command sets the output reference frequency.

*RST +0.0000000000000E+00

Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Freq Ref Set

Remarks N/A

:FREQuency:REFerence:STATe

Supported All

[1 SOURce] : FREQuency: REFer ence: STATe ON GFF| 1| 0
[1 SOURce] : FREQuency: REFer ence: STATe?

This command enables or disables the frequency reference mode.

*RST 0

Choices ON OFF 1 0

Key Entry Freq Ref Off On

Remarks When the frequency reference mode is on, subsequent frequency

parameters are set relative to the reference value.

Chapter 4 239

Command Reference
Frequency Subsystem ([:SOURce])

‘FREQuency:STARt

Supported All

[SOURce] : FREQuency: STARt <val ><uni t >
[1 SOURce] : FREQuency: STAR ?

This command sets the frequency start point for a step sweep.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Freq Start
Remarks N/A
:FREQuency:STOP

Supported All

[: SOURce] : FREQuency: STCP <val ><uni t >
[: SOURce] : FREQuency: STOP?

This command sets the frequency stop point for a step sweep.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Freq Stop
Remarks N/A

240 Chapter 4

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency[:CW]
Supported All
[SOURce] : FREQuency[: W <val ><uni t >
[SOURce] : FREQuency[: CW ?

This command sets the signal generator’s output frequency for the CW and FIXed
frequency modes.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Frequency
Remarks Refer to “:FREQuency:MODE” on page 237 for setting the frequency
type.

‘PHASe:REFerence

Supported All
[: SOURce] : PHASe: REFer ence

This command sets the current output phase as a zero reference.

*RST N/A

Range N/A

Key Entry Phase Ref Set

Remarks Subsequent phase adjustments are set relative to the new reference.

Chapter 4 241

Command Reference
Frequency Subsystem ([:SOURce])

:PHASe[:ADJust]

Supported All

[: SQURce] : PHASe[: ADJust] <val ><uni t>
[SOURce] : PHASe[: ADJust] ?

This command adjusts the phase of the modulating signal.

The query will only return values in radians.

*RST +0.00000000E+000
Range Radians: —3.14 to 3.14RAD Degrees: —180 to 179DEG
Key Entry Adjust Phase
Remarks N/A
:ROSCillator:SOURce

Supported All
[SOURce] : RCBA | | at or : SOURce?

This command queries the source of the signal generator’s reference oscillator. It returns
either INT (internal) or EXT (external).

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

242 Chapter 4

Command Reference
Frequency Subsystem ([:SOURce])

‘ROSCillator:SOURce:AUTO

Supported All except signal generators with Option UNJ

[SOURce] : RCBG | | at or : SOURce: AUTO QN GFF| 1] 0

[SOURce] : RCBA | | at or : SOURce: AUTO?

This command enables or disables the ability of the signal generator to automatically
select between the internal and an external reference oscillator.

ON (2) This choice enables the signal generator to detect when a valid
reference signal is present at the 10 MHz IN connector and
automatically switches from internal to external frequency reference.

OFF (0) This choice selects the internal reference oscillator and disables the
switching capability between the internal and an external frequency
reference.

*RST 1

Choices ON OFF 1 0

Key Entry Ref Oscillator Source Auto Off On
Remarks N/A

Chapter 4 243

Command Reference
Frequency Modulation Subsystem ([:SOURce])

Frequency Modulation Subsystem ([:SOURce])

:FM[1]]2...
Supported PSG-A Series
[:SOURce]: FM 1] 2. ..

This prefix enables the selection of the FM path and is part of most SCPI commands
associated with this subsystem. The two paths are equivalent to the FM Path 1 2 softkey.

FM[1] FM Path 1 2 with 1 selected
FM2 FM Path 1 2 with 2 selected

When just FM is shown in a command, this means the command applies globally to both
paths.

Each path is set up separately. When a SCPI command uses FM[1], only path one is
affected. Consequently, when FM2 is selected, only path two is set up. However, the
deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of FM[1] to FM2. Changing the deviation
value for one path will change it for the other path.

These two paths can be on at the same time provided the following conditions have been
met:

= DUALsine or SWEPtsine is not the selection for the waveform type
= each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

= FM2 must be set to a deviation less than FM[1]

244 Chapter 4

Command Reference
Frequency Modulation Subsystem ([:SOURCce])

:FM:INTernal:FREQuency:STEP[:INCRement]
Supported PSG-A Series

[SOURce] : FM | NTer nal : FREQuency: STEP[: | NCRenent] <nun®
[SOURce] : FM | NTer nal : FREQuency: STEP[: | NCRenent | ?

This command sets the step increment for the internal frequency modulation.

The variable <num> sets the entered value in units of hertz.

*RST N/A

Range 0.5-1E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the FM frequency setting. Refer to
“:FM[1]]2:INTernal[1] | 2:FREQuency” on page 249 for more
information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

‘FM[1]]2:EXTernal[1]]2:COUPLINg
Supported PSG-A Series

[:SOURce]: FM 1] | 2: EXTernal [1] | 2: COUPl i ng AC DC
[SOURce]: FM 1] | 2: EXTernal [1] | 2: COUPI i ng?

This command sets the coupling for the frequency modulation source through the
selected external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Choices AC DC
Key Entry Ext Coupling DC AC
Remarks The command does not change the currently active source or switch the

current modulation on or off. The modulating signal may be the sum of
several signals, either internal or external sources.

Chapter 4 245

Command Reference
Frequency Modulation Subsystem ([:SOURce])

‘FM[1]]2:EXTernal[1]]2:IMPedance
Supported PSG-A Series

[: SOURce]: FM 1] | 2: EXTernal [1] | 2: | MPedance <50| 600>
[SOURce] : FM 1] | 2: EXTer nal [1] | 2: | MPedance?

This command sets the input impedance for the selected external input.

*RST +5.00000000E+001

Choices 50 600

Key Entry Ext Impedance 50 Ohm 600 Ohm
Remarks N/A

:FM[1]]2:INTernal[1]:FREQuency:ALTernate
Supported PSG-A Series

[SOURce] : FM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e <val ><uni t >
[SOURce] : FM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e?

This command sets the frequency for the alternate signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.5HZ-1MHZ Swept-Sine: 1IHZ-1MHZ

Key Entry FM Tone 2 Rate FM Stop Rate

Remarks The alternate signal frequency is the second tone of a dual-sine or the

stop frequency of a swept-sine waveform.

Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 250 for
the waveform selection.

246 Chapter 4

Command Reference
Frequency Modulation Subsystem ([:SOURCce])

‘FM[1]]2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
Supported PSG-A Series

[: SOURce] : FM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e: AMPLI t ude:

PERCent <val ><uni t >

[SOURce] : FM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e: AMPLi t ude: PERCent ?
This command sets the amplitude of the second tone for a dual-sine waveform as a

percentage of the total amplitude. For example, if the second tone makes up 30% of the
total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry FM Tone 2 Ampl Percent Of Peak

Remarks Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

‘FM[1]]2:INTernal[1]:SWEep:RATE
Supported PSG-A Series

[SOURce]: FM 1] | 2: I NTer nal [1] : SWEep: RATE <val ><uni t >
[SOURce] : FM 1] | 2: I NTer nal [1] : SWEep: RATE?

This command sets the sweep rate for the swept-sine waveform.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry FM Sweep Rate

Remarks Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

Chapter 4 247

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]]2:INTernal[1]:SWEep:TRIGger

Supported

PSG-A Series

[: SOURce]: FM 1] | 2: I NTer nal [1] : SWeep: TR Gger BUS| | Mvedi at e| EXTer nal | KEY
[SOURce] : FM 1] | 2: I NTer nal [1] : SWeep: TR (ger ?

This command sets the trigger source for the frequency modulated swept-sine waveform.

BUS

IMMediate
EXTernal

KEY

*RST
Choices
Key Entry

Remarks

This choice enables GPIB triggering using the * TRGor GET command or
LAN triggering using the * TRGcommand.

This choice enables immediate triggering of the sweep event.

This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.

IMM
BUS IMMediate EXTernal KEY
Bus Free Run Ext Trigger Key

Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 250 for
the waveform selection.

248

Chapter 4

Command Reference
Frequency Modulation Subsystem ([:SOURCce])

:FM[1]]2:INTernal[1] | 2.FREQuency
Supported PSG-A Series

[SOURce]: FM 1] | 2: I NTer nal [1] | 2: FREQuency <val ><uni t > UP| DO/
[SOURce]: FM 1] | 2: I NTer nal [1] | 2: FREQuency?

This command sets the internal frequency modulation rate for the following
applications:

= the first tone of a dual-sine waveform
= the start frequency for a swept-sine waveform

= the frequency rate for all other waveforms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.5HZ-1MHZ Swept-Sine: 1IHZ-1MHZ
All Other Waveforms: 0.5HZ-100kHZ
Choices <val><unit> UP DOWN
Key Entry FM Tone 1 Rate FM Start Rate FM Rate
Remarks Refer to “:FM:INTernal:FREQuency:STEP[:INCRement]” on page 245

for setting the value associated with the UP and DOWN choices.

Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 250 for
the waveform selection.

:FM[1]]2:INTernal[1] | 2:FUNCtion:NOISe

Supported PSG-A Series

[:SOURce]: FM 1] | 2: I NTernal [1] | 2: FUNCt i on: NO Se GAUSsi an| UNI For m
[:SOURce]: FM 1] | 2: I NTernal [1] | 2: FUNCt i on: NQ Se?

This command sets the noise type when NOISe is the waveform choice.

*RST UNIF

Choices GAUSsian UNIForm

Key Entry Gaussian Uniform

Remarks Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

Chapter 4 249

Command Reference
Frequency Modulation Subsystem ([:SOURce])

‘FM[1]]2:INTernal[1]] 2:FUNCtion:RAMP
Supported PSG-A Series

[:SOURce]: FM 1] | 2: I NTernal [1] | 2: FUNCt i on: RAMP POSitive| NEGati ve
[SOURce]: FM 1] | 2: I NTernal [1] | 2: FUNCt i on: RAMP?

This command sets either a positive or negative ramp as the internally modulated

waveform.

*RST POS

Choices POSitive NEGative

Key Entry Positive Negative

Remarks Refer to “:FM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” for the

waveform selection.

‘FM[1]]2:INTernal[1]]| 2:FUNCtion:SHAPe

Supported PSG-A Series

[SOURce]: FM 1] | 2: I NTernal [1] | 2: FUNCt i on: SHAPe SI NE| TR angl e| SQUar e|
RAMP| NO Se| DUALSsI ne| SWEPt si ne
[SOURce]: FM 1] | 2: I NTernal [1] | 2: FUNCt i on: SHAPe?

This command sets the FM waveform type.

*RST SINE

Choices SINE TRIlangle SQUare RAMP NOISe DUALsine SWEPTsine
Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Remarks The INTernal2 source selection does not support the DUALsine and

SWEPtsine waveform choices.

250 Chapter 4

Command Reference
Frequency Modulation Subsystem ([:SOURCce])

:FM[1]]2:SOURCce
Supported PSG-A Series
[SOURce]: FM 1] | 2: SOURce | NT[1] | | NT2| EXT1| EXT2
[SOURce] : FM 1] | 2: SOURce?
This command sets the source to generate the frequency modulation.
INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to
provide an externally applied signal that can be ac- or dc-coupled.

*RST INT

Choices INT[1] INT2 EXT1 EXT2

Key Entry Internal 1 Internal 2 Extl Ext2

Remarks The externally applied, ac-coupled input signal is tested for a voltage

level and a display annunciator will report a high or low condition if
that voltage is > +3% of 1 V,,.

‘FM[1]|2:STATe
Supported PSG-A Series

[: SOURce]: FM 1] | 2: STATe ON OFF| 1| O
[SOURce] : FM 1] | 2: STATe?

This command enables or disables the frequency modulation for the selected path.

*RST 0

Choices ON OFF 1 0

Key Entry FM Off On

Remarks The RF carrier is modulated when you set the signal generator’s

modulation state to ON, see “:MODulation[:STATe]” on page 189 for
more information.

Whenever frequency modulation is enabled, the FMannunciator is
turned on in the display

The two paths for frequency modulation can be simultaneously
enabled. Refer to “:FM[1]]2...” on page 244 for more information.

Chapter 4 251

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]]2[:DEViation]
Supported PSG-A Series

[: SOURce]: FM 1] | 2[: DEVi ati on] <val ><uni t>

[:SOURce]: FM 1] | 2[: DEVi ati on] ?

This command sets the frequency modulation deviation.

*RST +1.00000000E+003

Range Frequency Deviation
100kHZ-250MHZ 0-1MHZ
> 250-500MHZ 0-500kHZz
> 500MHZ-1 GHZ 0-1MHZ
> 1-2GHz 0-2MHZ
>2-3.2GHZ 0—-4MHZ
> 3.2-10GHz 0-8MHZ
> 10-20GHZ 0-16MHZ
> 20-40GHZ 0-32MHZ

Key Entry FM DEV

Remarks If deviation tracking is ON, a change to the deviation value on one path

will apply to both. Refer to “:FM[1]] 2[:DEViation]: TRACK” on page 253
for more information and setting the deviation tracking.

252

Chapter 4

Command Reference
Frequency Modulation Subsystem ([:SOURCce])

:FM[1]]2[:DEViation]: TRACk

Supported

PSG-A Series

[:SOURce]: FM 1] | 2[: DEVi ation]: TRACK ON OFF| 1] 0
[SOURce]: FM 1] | 2[: DEVi at i on] : TRACK?

This command enables or disables the deviation coupling between the paths (FM[1] and

Fm2).
ON (1)

OFF (0)

*RST
Choices

Key Entry

Remarks

This choice will link the deviation value of FM[1] with FM2; FM2 will
assume the FM[1] deviation value. For example, if FM[1] deviation is set
to 500 Hz and FM2 is set to 2 kHz, enabling the deviation tracking will
cause the FM2 deviation value to change to 500 Hz. This applies
regardless of the path (FM[1] or FM2) selected in this command

This choice disables the coupling and both paths will have independent
deviation values.

0
ON OFF 1 O

FM Dev Couple Off On

This command uses exact match tracking, not offset tracking.

Chapter 4

253

Command Reference
List/Sweep subsystem ([:SOURce])

List/Sweep subsystem ([:SOURce])

LIST:DIRection

Supported All
[SOURce] : LI ST: Dl Recti on UP| DOM
[: SOURce] : LI ST: Dl Recti on?
This command sets the direction of a list or step sweep.
upP This choice enables a sweep in an ascending order:
< first to last point for a list sweep
= start to stop for a step sweep

DOWN This choice reverses the direction of the sweep.

*RST UP

Choices UP DOWN

Key Entry Sweep Direction Down Up
Remarks N/A

254 Chapter 4

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:DWELI

Supported All

[SOURce] : LI ST: DVELI <val >{, <val >}
[SOURce] : LI ST: DWELI ?

This command sets the dwell time for the current list sweep points.

The variable <val> is measured in units of seconds with a 0.001 resolution.

NOTE The dwell time (<val>) does not begin until the signal generator has
settled for the current frequency and/or amplitude change. When the
signal generator has settled, a trigger signal is transmitted through the
rear panel SOURCE SETTLED OUTPUT connector.

*RST N/A

Range 0.001-60

Key Entry N/A

Remarks Dwell time is used when IMMediate is the trigger source. Refer to

“LIST:TRIGger:SOURce” on page 259 for the trigger setting.

The dwell time is the amount of time the sweep is guaranteed to pause
after setting the frequency and/or power for the current point.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

‘LIST:DWELI:POINts
Supported All
[SOURce] : LI ST: DVIELI : PO Nt s?

This command queries the signal generator for the number of dwell points in the current
list sweep file.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

Chapter 4 255

Command Reference
List/Sweep subsystem ([:SOURce])

LIST:-DWELILTYPE

Supported All
[: SQURce] : LI ST: DWELI : TYPE LI ST| STEP
[: SQURce] : LI ST: DVELI : TYPE?

This command toggles the dwell time for the list sweep points between the values
defined in the list sweep and the value for the step sweep.

LIST This choice selects the dwell times from the list sweep. Refer to
“:LIST:DWELI" on page 255 for setting the list dwell points.

STEP This choice selects the dwell time from the step sweep. Refer to
“:SWEep:DWELI” on page 262 for setting the step dwell.

*RST LIST

Choices LIST STEP

Key Entry Dwell Type List Step
Remarks N/A

‘LIST:FREQuency

Supported All

[: SQURce] : LI ST: FREQuency <val >{, <val >}
[: SOURce] : LI ST: FREQuency?

This command sets the frequency values for the current list sweep points.

The variable <val> is measured in units of hertz.

*RST N/A

Range 20 GHz Models: 100E3-20E9 40 GHz Models: 100E3-40E9
Key Entry N/A

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or * RST.

256 Chapter 4

Command Reference
List/Sweep subsystem ([:SOURce])

‘LIST:FREQuency:POINts

Supported

All

[SOURce] : LI ST: FREQuency: PO Nt s?

This command queries the current list sweep file for the number of frequency points.

*RST
Range
Key Entry

Remarks

:LIST:MANual
Supported

N/A
N/A
N/A
N/A

All

[SOURce] : LI ST: MANual <val >
[SOURce] : LI ST: MANual ?

This command sets a list or step sweep point as the current sweep point controlling the
frequency and power output.

*RST
Range
Key Entry

Remarks

N/A
1-1601
Manual Point

If list or step mode is controlling frequency and/or power, then the
indexed point in the respective list(s) will be used.

Entering a value with this command will have no effect, unless
MANual is the selected mode. Refer to “:LIST:MODE" on page 258 for
setting the proper mode.

If the point selected is beyond the length of the longest enabled list,
then the point will be set to the maximum possible point, and an error
will be generated.

Chapter 4

257

Command Reference
List/Sweep subsystem ([:SOURce])

LIST:MODE

Supported

All

[SOURce] : LI ST: MCDE AUTQ MANual
[SOURce] : LI ST: MODE?

This command sets the operating mode for the current list or step sweep.

AUTO

MANual

*RST
Choices

Key Entry

Remarks

LIST:POWer

Supported

This choice enables the selected sweep type to perform a sweep of all
points.

This choice enables you to select a sweep point which controls the
frequency and/or amplitude according to the sweep type. Refer to
“:LIST:MANual” on page 257 for selecting a sweep point

AUTO
AUTO MANual

Manual Mode Off On
N/A

All

[SOURce] : LI ST: POXr <val >{, <val >}
[: SOURce] : LI ST: PONér ?

This command sets the amplitude for the current list sweep points.

*RST

Range

Key Entry

Remarks

N/A

Refer to “:POWer[:LEVel][:IMMediate][:AMPLitude]” on page 287 for
output power ranges.

N/A

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

During an amplitude sweep operation, signal generators with Option
1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB. The 45 dB sweep range can be moved by inputting different
power levels.

258

Chapter 4

Command Reference
List/Sweep subsystem ([:SOURce])

LIST:POWer:POINts
Supported All
[SOURce] : LI ST: PONer: PO Nt s?

This command queries the number of power points in the current list sweep file.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

‘LIST:TRIGger:SOURce

Supported All

[SOURce] : LI ST: TR Gger : SOURce BUS| | Medi at e| EXTer nal | KEY

[SOURce] : LI ST: TR Gger : SOURce?

This command sets the point trigger source for a list or step sweep event.

BUS This choice enables GPIB triggering using the * TRGor GET command or
LAN triggering using the * TRGcommand.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus Free Run Ext Trigger Key
Remarks N/A

Chapter 4 259

Command Reference
List/Sweep subsystem ([:SOURce])

LIST:TYPE
Supported All

[SOURce] : LI ST: TYPE LI ST| STEP
[SQURce] : LI ST: TYPE?

This command toggles between the two types of sweep.

*RST STEP

Choices LIST STEP

Key Entry Sweep Type List Step
Remarks N/A

LIST:TYPE:LIST:INITialize:FSTep
Supported All

CAUTION The current list sweep data will be overwritten once this command is
executed. If needed, save the current data. Refer to “:STORe:LIST” on
page 184 for storing list sweep files.

[SOURce] : LI ST: TYPE: LI ST: INTi al i ze: FSTep

This command replaces the loaded list sweep data with the settings from the current
step sweep data points.

*RST N/A

Range N/A

Key Entry Load List From Step Sweep

Remarks You can have only one sweep list at a time.

260 Chapter 4

Command Reference
List/Sweep subsystem ([:SOURce])

LIST:TYPE:LIST:INITialize:PRESet
Supported All

CAUTION The current list sweep data will be overwritten once this command is
executed. If needed, save the current data. Refer to “:STORe:LIST” on
page 188 for storing list sweep files.

[:SOURce]: LI ST: TYPE: LI ST: INTi al i ze: PRESet

This command replaces the current list sweep data with a factory-defined file consisting
of one point at a frequency, amplitude, and dwell time.

*RST N/A
Range N/A
Key Entry Preset List
Remarks N/A

Chapter 4 261

Command Reference
List/Sweep subsystem ([:SOURce])

:SWEep:DWELI

Supported All

[: SOURce] : SWEep: DVEELI <val >
[SOURce] : SWEep: DVEELI ?

This command enables you to set the dwell time for a step sweep.

The variable <val> is measured in units of seconds with a 0.001 resolution.

NOTE The dwell time (<val>) does not begin until the signal generator has
settled for the current frequency and/or amplitude change. When the
signal generator has settled, a trigger signal is transmitted through the
rear panel SOURCE SETTLED OUTPUT connector.

*RST +2.00000000E-003

Range 0.001-60

Key Entry Step Dwell

Remarks Dwell time is used when the trigger source is set to IMMediate. Refer

to “:LIST:TRIGger:SOURce” on page 259 for the trigger setting.

The dwell time is the amount of time the sweep is guaranteed to pause
after setting the frequency and/or power for the current point.

:SWEep:POINts

Supported All

[: SOURce] : SWEep: PO Nts <val >
[: SOURce] : SWEep: PO Nt s?

This command enables you to define the number of points in a step sweep.

*RST 2
Range 2-1601
Key Entry # Points
Remarks N/A

262 Chapter 4

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

Low Frequency Output Subsystem ([:SOURce].LFOutput)

:AMPLitude

Supported PSG-A Series

[SOURce] : LFQut put : AMPLI t ude <val ><uni t >
[SOURce] : LFQut put : AMPLI t ude?

This command sets the amplitude for the signal at the LF OUTPUT connector.

*RST 0.00

Range 0.000VP-3.5VP

Key Entry LF Out Amplitude Into 50 Ohms
Remarks N/A

:FUNCtion[1]:FREQuency:ALTernate
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] : FREQuency: ALTer nate <val ><unit>
[SOURce] : LFQut put : FUNCti on[1] : FREQuency: ALTer nat e?

This command sets the frequency for the alternate LF output signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.5HZ-1MHZ Swept-Sine: 1IHZ-1MHZ

Key Entry LF Out Tone 2 Freq LF Out Stop Freq

Remarks The alternate frequency is the second tone of a dual-sine or the stop

frequency of a swept-sine waveform.

Refer to “:FUNCtion[1]]| 2:SHAPe” on page 266 for selecting the
waveform type.

Chapter 4 263

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion[1]:FREQuency:ALTernate:AMPLitude:PERCent
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] : FREQuency: ALTer nat e: AMPLI t ude:

PERCent <val ><uni t >

[SOURce] : LFQut put : FUNCti on[1] : FREQuency: ALTer nat e: AMPLI t ude: PERCent ?
This command sets the amplitude of the second tone for a dual-sine waveform as a

percentage of the total LF output amplitude. For example, if the second tone makes up
30% of the total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry LF Out Tone 2 Ampl % of Peak

Remarks Refer to “:FUNCtion[1]]| 2:SHAPe” on page 266 for selecting the

waveform type.

‘FUNCtion[1]:SWEep:RATE
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] : SWEep: RATE <val ><uni t >
[SOURce] : LFQut put : FUNCti on[1] : SWEep: RATE?

This command sets the sweep rate for an internally generated swept-sine signal at the

LF output.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry LF Out Sweep Rate

Remarks Refer to “:FUNCtion[1]]| 2:SHAPe” on page 266 for selecting the

waveform type.

264 Chapter 4

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion[1]:SWEep:TRIGger

Supported

PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] : SWEep: TR Gger BUS| | Mvedi at e| EXTer nal | KEY
[SOURce] : LFQut put : FUNCti on[1] : SWEep: TR Gger ?

This command sets the trigger source for the internally generated swept-sine waveform
signal at the LF output.

BUS

IMMediate
EXTernal

KEY

*RST
Choices
Key Entry

Remarks

This choice enables GPIB triggering using the * TRGor GET command or
LAN triggering using the * TRGcommand.

This choice enables immediate triggering of the sweep event.

This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.

IMM
BUS IMMediate EXTernal KEY
Bus Free Run Ext Trigger Key

Refer to “:FUNCtion[1]]| 2:SHAPe” on page 266 for selecting the
waveform type.

Chapter 4

265

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion[1]]| 2:FREQuency
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] | 2: FREQuency <val ><uni t >
[SOURce] : LFQut put : FUNCti on[1] | 2: FREQuency?

This command sets the internal modulation frequency for the following applications:
= the first tone of a dual-sine waveform
= the start frequency for a swept-sine waveform

= the frequency rate for all other waveforms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.5HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.5HZ-100kHZ
Key Entry LF Out Tone 1 Freq LF Out Start Freq LF Out Freq
Remarks Refer to “:FUNCtion[1] | 2:SHAPe” for selecting the waveform type.

:FUNCtion[1]]2:SHAPe
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] | 2: SHAPe SI NE| DUALsi ne| SEEPt si ne| TRl angl e|
SQUar e| RAMP| NO Se| DC
[SOURce] : LFQut put : FUNCt i on[1] | 2: SHAPe?

This command sets the waveform type for the generated signal at the LF output.

*RST SINE

Choices SINE DUALsine SWEPTsine TRlangle SQUare RAMP
NOISe DC

Key Entry Sine Dual-Sine Swept-Sine Triangle Square Ramp NOISe
DC

Remarks FUNCtion2 does not support the DUALsine or the SWEPtsine
waveforms.

266 Chapter 4

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion:NOISe
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] | 2: SHAPe: NO Se UN For nj GAUSsi an
[SOURce] : LFQut put : FUNCti on[1] | 2: SHAPe: NO Se?

This command sets the noise type at the LF output when NOISe is the selected

waveform.

*RST UNIF

Choices UNIForm GAUSsian

Key Entry Uniform Gaussian

Remarks Refer to “:FUNCtion[1]]| 2:SHAPe” on page 266 for selecting the

waveform type.

:FUNCtion[1]]2:SHAPe:RAMP
Supported PSG-A Series

[SOURce] : LFQut put : FUNCti on[1] | 2SHAPe: RAMP PCSi ti ve| NEGati ve
[SOURce] : LFQut put : FUNCti on[1] | 2SHAPe: RAMP?

This command sets the slope type for the ramp waveform at the LF output.

*RST POS

Choices POSitive NEGative

Key Entry Positive Negative

Remarks Refer to “:FUNCtion[1]]| 2:SHAPe” on page 266 for selecting the

waveform type.

Chapter 4 267

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:SOURce

Supported

PSG-A Series

[SOURce] : LFQut put : SOURce | NT[1] | I NT2| FUNCti on[1] | FUNCt i on2
[1 SOURce] : LFQut put : SOURce?

This command sets the low frequency source for the LF output.

INT

FUNCtion

*RST
Choices
Key Entry

Remarks

:STATe

Supported

This choice enables you to output a signal where the frequency and
shape of the signal is set by the internal source as it is being used by a
modulation. For example, if the internal source is currently assigned to
an AM path configuration and AM is turned on, the signal output at
the LF OUTPUT connector will have the frequency and shape of the
amplitude modulating signal.

This choice enables the selection of an internal function generator.
INT

INT[1] INT2 FUNCtion[l] FUNCtion2

Internal 1 Monitor Internal 2 Monitor Function Generator 1

Function Generator 2

Any active modulation using an internal source is turned off when
FUNCtion[1] or FUNCtion2 is selected.

PSG-A Series

[SOURce] : LFQut put : STATe ON| OFF| 1| 0
[SOURce] : LFQut put : STATe?

This command enables or disables the low frequency output.

*RST
Choices

Key Entry

Remarks

0

ON OFF 1 O
LF Out Off On
N/A

268

Chapter 4

Command Reference
Phase Modulation subsystem ([:SOURce])

Phase Modulation subsystem ([:SOURce])

PM[1]]2...
Supported PSG-A Series
[:SOURce]:PM 1] 2. ..

This prefix enables the selection of the ®M path and is part of most SCPI commands
associated with this subsystem. The two paths are equivalent to the ®M Path 1 2 softkey.

PM[1] ®M Path 1 2 with 1 selected
PM2 ®M Path 1 2 with 2 selected

When just PM is shown in a command, this means the command applies globally to both
paths.

Each path is set up separately. When a SCPI command uses PM[1], only path one is
affected. Consequently, when PM2 is selected, only path two is set up. However, the
deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of PM[1] to PM2. Changing the deviation
value for one path will change it for the other path.

These two paths can be on at the same time provided the following conditions have been
met:

= DUALsine or SWEPtsine is not the selection for the waveform type
= each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

= PM2 must be set to a deviation less than or equal to PM[1]

Chapter 4 269

Command Reference
Phase Modulation subsystem ([:SOURce])

‘PM:INTernal:FREQuency:STEP[:INCRement]

Supported PSG-A Series

[SOURce] : PM | NTer nal : FREQuency: STEP[: | NCRenent] <nun®
[SOURce] : PM | NTer nal : FREQuency: STEP[: | NCRenent | ?

This command sets the step increment for the phase modulation internal frequency.

The variable <num> sets the entered value in units of hertz.

*RST N/A

Range 0.5-1E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the ®M frequency command. Refer to
“:PM[1]]2:INTernal[1] | 2:FREQuency” on page 274 for more
information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

:PM[1] | 2:BANDwidth | BWIDth

Supported PSG-A Series
[: SQURce] : PM 1] | 2: BANDw dt h| BWDth NORval | H GH
[: SOURce] : PM 1] | 2: BANDwi dt h| BW Dt h?

This command toggles between normal phase modulation and high bandwidth phase
modulation mode.

*RST NORM
Choices NORMal HIGH
Key Entry FM ©M Normal High BW
Remarks N/A
270 Chapter 4

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]]2:EXTernal[1]]2:COUPIing

Supported PSG-A Series
[SOURce]: PM 1] | 2: EXTernal [1] | 2: COUPl i ng AC DC
[: SOURce]: PM 1] | 2: EXTernal [1] | 2: COUPIl i ng?

This command sets the coupling for the phase modulation source through the selected
external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Choices AC DC
Key Entry Ext Coupling DC AC
Remarks This command does not change the currently active source or switch

the current modulation on or off. The modulating signal may be the
sum of several signals, either internal or external sources.

‘PM[1]]2:EXTernal[1]] 2:IMPedance

Supported PSG-A Series

[:SOURCce]:PM[1]] 2:EXTernal[1]] 2:IMPedance <50] 600>
[:SOURCce]:PM[1]] 2:EXTernal[1]] 2:IMPedance?

This command sets the input impedance for the selected external input.

*RST +5.00000000E+001

Choices 50 600

Key Entry Ext Impedance 50 Ohm 600 Ohm
Remarks N/A

Chapter 4 271

Command Reference
Phase Modulation subsystem ([:SOURce])

‘PM[1]]2:INTernal[1]:FREQuency:ALTernate

Supported PSG-A Series

[: SOURce]: PM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e <val ><uni t>
[SOURce] : PM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e?

This command sets the frequency for the alternate signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.5HZ-1MHZ Swept-Sine: 1HZ-1MHZ

Key Entry ®M Stop Rate ®M Tone 2 Rate

Remarks The alternate frequency is the second tone of a dual-sine or the stop

frequency of a swept-sine waveform.

Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 275 for
the waveform selection.

‘PM[1]]2:INTernal[1]:FREQuency:ALTernate:AMPLIitude:PERCent

Supported PSG-A Series

[: SOURce] : PM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e: AMPLI t ude:
PERCent <val ><uni t >
[: SOURce] : PM 1] | 2: I NTer nal [1] : FREQuency: ALTer nat e: AMPLI t ude: PERCent ?

This command sets the amplitude of the second tone for the dual-sine waveform as a
percentage of the total amplitude. For example, if the second tone makes up 30% of the
total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry ®M Tone 2 Ampl Percent of Peak

Remarks Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

272

Chapter 4

Command Reference
Phase Modulation subsystem ([:SOURce])

‘PM[1]]2:INTernal[1]:SWEep:RATE
Supported PSG-A Series

[SOURce] : PM 1] | 2: I NTer nal [1] : SWEep: RATE <val ><uni t >
[SOURce] : PM 1] | 2: I NTer nal [1] : SWEep: RATE?

This command sets the sweep rate for a phase-modulated, swept-sine waveform.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry ®M Sweep Rate

Remarks Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

‘PM[1]]2:INTernal[1]:SWEep:TRIGger
Supported PSG-A Series

[: SOURce]: PM 1] | 2: I NTer nal [1] : SWeep: TR Gger BUS| | Mvedi at e| EXTer nal | KEY
[: SOURce] : PM 1] | 2: I NTer nal [1] : SWEep: TR Ger ?

This command sets the trigger source for the phase-modulated, swept-sine waveform.

BUS This choice enables GPIB triggering using the * TRGor GET command or
LAN triggering using the * TRGcommand.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus Free Run Ext Trigger Key
Remarks Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

Chapter 4 273

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]]2:INTernal[1]]| 2:FREQuency

Supported. PSG-A Series

[: SQURce] : PM 1] | 2: I NTernal [1] | 2: FREQuency <val ><uni t >| UP| DO
[SOURce]: PM 1] | 2: I NTer nal [1] | 2: FREQuency?

This command sets the internal modulation frequency rate for the following
applications:

= the first tone of a dual-sine waveform
= the start frequency for a swept-sine waveform

= the frequency rate for all other wave forms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.5HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.5HZ-100kHZ
Choices <val><unit> UP DOWN
Key Entry ®M Tone 1 Rate ®M Start Rate ®M Rate
Remarks Refer to “:PM:INTernal:FREQuency:STEP[:INCRement]” on page 270

for setting the value associated with the UP and DOWN choices.

Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 275 for
the waveform selection.

‘PM[1]]2:INTernal[1]] 2:FUNCtion:NOISe

Supported PSG-A Series

[SOURce]: PM 1] | 2: I NTernal [1] | 2: FUNCt i on: NO Se GAUSsi an| UNI For m
[:SOURce]: PM 1] | 2: I NTernal [1] | 2: FUNCt i on: NO Se?

This command sets the noise type when NOISe is the waveform choice.
*RST UNIF

Choices GAUSsian UNIForm
Key Entry Gaussian Uniform
Remarks Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

274

Chapter 4

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]]2:INTernal[1]] 2:FUNCtion:RAMP

Supported PSG-A Series

[SOURce]: PM 1] | 2: I NTernal [1] | 2: FUNCt i on: RAMP POSitive| NEGati ve
[SOURce]: PM 1] | 2: I NTernal [1] | 2: FUNCt i on: RAMP?

This command specifies the slope type for the ramp-modulated waveform.

*RST POS

Key Entry Positive Negative

Choices POSitive NEGative

Remarks Refer to “:PM[1]] 2:INTernal[1]] 2:FUNCtion:SHAPe” for the

waveform selection.

:PM[1]]2:INTernal[1]] 2:FUNCtion:SHAPe
Supported PSG-A Series

[SOURce]: PM 1] | 2: I NTernal [1] | 2: FUNCt i on: SHAPe SI NE| TR angl e| SQUar e|
RAMP| NO Se| DUALSI ne| SWEPt si ne
[SOURce]: PM 1] | 2: I NTernal [1] | 2: FUNCt i on: SHAPe?

This command sets the phase modulation waveform type.

*RST SINE

Choices SINE TRIlangle SQUare RAMP NOISe DUALsine SWEPTsine
Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Remarks The INTernal2 source selection does not support the DUALsine and

SWEPtsine waveform choices.

Chapter 4 275

Command Reference
Phase Modulation subsystem ([:SOURce])

‘PM[1]]2:SOURce

Supported PSG-A Series

[: SQURce] : PM 1] | 2: SOURce | NT[1] | | NT2| EXT1| EXT2
[SOURce] : PM 1] | 2: SOURce?

This command sets the source to generate the phase modulation.
INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to
provide an externally applied signal that can be ac- or dc-coupled.

*RST INT

Choices INT[1] INT2 EXT1 EXT2
Key Entry Internal 1 Internal 2 Extl Ext2
Remarks The externally applied, ac-coupled input signal is tested for a voltage

level and a display annunciator will report a high or low condition if
that voltage is > +3% of 1 V,,.

‘PM[1]|2:STATe

Supported PSG-A Series

[: SOURce]: PM 1] | 2: STATe ON OFF| 1| O
[: SOURce] : PM 1] | 2: STATe?

This command enables or disables the phase modulation for the selected path.

*RST 0

Choices ON OFF 1 O

Key Entry ®M Off On

Remarks The RF carrier is modulated when you set the signal generator’s

modulation state to ON, see “:MODulation[:STATe]” on page 189 for
more information.

Whenever phase modulation is enabled, the ®Mannunciator is turned
on in the display

The two paths for phase modulation can be simultaneously enabled.
Refer to “:PMJ[1]] 2...” on page 269 for more information.

276

Chapter 4

Command Reference
Phase Modulation subsystem ([:SOURce])

‘PM[1]]2[:DEViation]
Supported PSG-A Series

[SOURce]: PM 1] | 2[: DEVi ati on] <val ><uni t >| UP| DOMN
[:SOURce] : PM 1] | 2[: DBV ation] ?

This command sets the deviation of the phase modulation.

The variable <unit> will accept RAD (radians), PIRAD (pi-radians), and DEG (degrees);
however, the query will only return values in radians.

*RST +0.00000000E+000
Range Frequency Normal Bandwidth High Bandwidth
100kHZ-250MHZ 0-10RAD 0-1RAD
> 250-500MHZ 0-5RAD 0-0.5RAD
> 500MHZ-1GHZ 0-10RAD 0-1RAD
> 1-2GHZ 0-20RAD 0-2RAD
> 2-3.2GHz 0-40RAD 0-4RAD
> 3.2-10GHZ 0-80RAD 0-8RAD
> 10-20GHZ 0-160RAD 0-16RAD
> 20-40GHZ 0-320RAD 0-32RAD
Choices <val><unit> UP DOWN
Key Entry ®M Dev
Remarks If deviation tracking is active, a change to the deviation value on one

path will apply to both.

Refer to “:PM[:DEViation]:STEP[:INCRement]” on page 278 for setting
the value associated with the UP and DOWN choices.

Chapter 4 277

Command Reference
Phase Modulation subsystem ([:SOURce])

‘PM[1]]2[:DEViation]:TRACk

Supported PSG-A Series

[:SOURce]: PM 1] | 2[: DEVi ati on]: TRACK ON OFF| 1| 0
[SOURce]: PM 1] | 2[: DEVi at i on] : TRACK?

This command enables or disables the deviation coupling between the paths (PM[1] and
PM2).

ON (1) This choice will link the deviation value of PM[1] with PM2; PM2 will
assume the PM[1] deviation value. For example, if PM[1] deviation is set
to 500 Hz and PM2 is set to 2 kHz, enabling the deviation tracking will
cause the PM2 deviation value to change to 500 Hz. This applies
regardless of the path (PM[1] or PM2) selected in this command.

OFF (0) This choice disables the coupling and both paths will have independent
deviation values.

*RST 0

Choices ON OFF 1 O

Key Entry ®M Dev Couple Off On

Remarks This command uses exact match tracking, not offset tracking.

:PM[:DEViation]:STEP[:INCRement]

Supported PSG-A Series

[SOURce]: PM: DEVi ation]: STEF : | NCRenent] <nune
[SOURce]: PM : DEVi ation]: STEF : | NCRerrent] ?

This command sets the phase modulation deviation step increment.

The variable <num> sets the increment value in units of radians.

*RST N/A

Range 0.001-1E3

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the ®M deviation command. Refer to “:PM[1]]| 2[:DEViation]” on
page 277 for more information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.

278

Chapter 4

Command Reference
Power Subsystem ([:SOURce])

Power Subsystem ([:SOURce])

:POWer:ALC:BANDwidth | BWIDth

Supported All

[SOURce] : POMér: ALC. BANDwI dt h| BW Dt h <nune[<freq suffix>]
[: SOURce] : POMNér: ALC. BANDw dt h| BW Dt h?

This command sets the bandwidth of the automatic leveling control (ALC) loop.

*RST 100.0

Choices <num>[<freq suffix>]: 100HZ 1kHZ 10kHZ 100kHZ
Key Entry 100Hz 1kHz 10kHz 100 kHz

Remarks N/A

:POWer:ALC:BANDwidth | BWIDth:AUTO

Supported All

[: SOURce] : POMNér: ALC. BANDw dt h| BW Dt h: AUTO ON| OFF| 1| O
[: SOURce] : POMér: ALC. BANDw dt h| BW Dt h: AUTCO?

This command sets the state of the ALC automatic bandwidth capability.

*RST 0

Choices ON OFF 1 O
Key Entry Auto

Remarks N/A

Chapter 4 279

Command Reference
Power Subsystem ([:SOURce])

‘POWer:ALC:LEVel

Supported All with Option 1E1

[SOURce] : POMér: ALC. LEVel <val ue>DB
[SQURce] : POMNr: ALC. LEVel ?

This command sets the ALC level when the attenuator hold is active.

*RST +1.00000000E+000

Range -20 to 25

Key Entry Set ALC Level

Remarks Use this command when the automatic attenuation mode is set to

OFF (0). Refer to “:POWer:ATTenuation:AUTO” on page 283 for
choosing the attenuator mode.

‘POWer:ALC:SEARch

Supported All

[SOURce] : POMér: ALC. SEARch ON OFF| 1] 0] ONCE
[: SOURce] : POMr: ALC. SEARch?

This command enables or disables the internal power search calibration.

ON (1) This choice executes the power search automatically with each change in
RF frequency or power.

OFF (0) This choice disables the automatic power search routine.
ONCE This choice executes a single power search of the current RF output signal.
*RST 0

Choices ON OFF 1 0 ONCE
Key Entry Power Search Manual Auto Do Power Search
Remarks Use this command when the ALC state is set to OFF (0). Refer to

“:POWer:ALC[:STATe]” on page 282 for setting the ALC state.

If ON was previously selected, executing ONCE will cause OFF to be
the current selection after the power search is completed.

280

Chapter 4

Command Reference
Power Subsystem ([:SOURce])

‘POWer:ALC:SOURce

Supported All

[SOURce] : POMr: ALC. SOURce | NTer nal | DI CDe| MHead
[SOURce] : POMr: ALC. SOURce?

This command enables you to select the ALC leveling source.

*RST INT

Choices INTernal DIODe MMHead

Key Entry Internal Ext Detector Source Module
Remarks N/A

:POWer:ALC:SOURce:EXTernal:COUPIling

Supported All

[: SOURce] : POMr: ALC. SOURce: EXTer nal : COUPl i ng <val ue>DB
[: SOURce] : POMr: ALC. SOURce: EXTer nal : COUPI i ng?

This command sets the external detector coupling factor.

*RST +1.60000000E+001

Range —-200 to 200

Key Entry Ext Detector Coupling Factor

Remarks Use this command when DIODe is the selected ALC leveling source.

Refer to “:POWer:ALC:SOURce” for the source selection.

Chapter 4 281

Command Reference

Power Subsystem ([:SOURce])

‘POWer:ALC[:STATe]

Supported

All

[SOURce] : POMr: AL : STATe] ONJ GFF| 1] 0
[SQURce] : POMNer: AL(: STATe] ?

This command enables or disables the automatic leveling control (ALC) circuit.

*RST
Choices

Key Entry

Remarks

1
ON OFF 1 O
ALC Off On

An alternative to setting the ALC to OFF (0), is to set the ALC to a
narrow bandwidth.

The purpose of the ALC circuit is to hold output power at the desired
level in spite of drift due to temperature and time.

‘POWer:AT Tenuation

Supported

All with Option 1E1

[SOURce] : POMNér: ATTenuat i on <val ><uni t >
[1 SQURce] : POMNer: ATTenuat i on?

This command sets the amount of attenuation at the RF output.

*RST +115

Choices <val><unit>:0DB 5DB 15DB 25DB 35DB 45DB 55DB
65DB 75DB 85DB 95DB 105DB 115DB

Key Entry Set Atten

Remarks Use this command when the automatic attenuation mode is set to
OFF (0). Refer to “:POWer:ATTenuation:AUTO” on page 283 for
choosing the attenuator mode.
The output power is the ALC level minus the attenuator setting. Refer
to “:POWer:ALC:LEVel” on page 280 for setting and determining the
ALC level.

282 Chapter 4

Command Reference
Power Subsystem ([:SOURce])

‘POWer:ATTenuation:AUTO

Supported All with Option 1E1

[SOURce] : POMr: ATTenuat i on: AUTO ON CFF| 1] 0
[SOURce] : POMr : ATTenuat i on: AUTO?

This command sets the state of the attenuator hold function.
ON (1) This choice enables the attenuators to operate normally.

OFF (0) This choice holds the attenuator at its current setting or at a selected
value that will not change during power adjustments.

*RST 1

Choices ON OFF 1 O

Key Entry Atten Hold Off On

Remarks Refer to “:POWer:ATTenuation” on page 282 for setting the attenuator

value when OFF (0) is the choice.

The OFF (0) choice eliminates the power discontinuity normally
associated with the attenuator switching during power adjustments.

During an amplitude sweep operation, signal generators with Option
1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB. The 45 dB sweep range can be moved by inputting different
power levels.

‘POWer:MODE

Supported All

[: SQURce] : POMr: MODE FI Xed| LI ST
[1 SOURce] : POMr : MCDE?

This command sets the signal generator’s RF output power operating mode.

*RST FIX

Choices FIXed LIST
Key Entry Amplitude Ampl
Remarks N/A

Chapter 4 283

Command Reference
Power Subsystem ([:SOURce])

‘POWer:REFerence

Supported All

[SOURce] : POMr: REFer ence <val ><unit >
[1 SOURce] : POMr : REFer ence?

This command sets the current output power reference.

*RST +0.00000000E+000

Range —400 to 300DBM

Key Entry Ampl Ref Set

Remarks The power reference range is affected by power offset.

‘POWer:REFerence:STATe

Supported All

[SOURce] : POMNr: REFer ence: STATe O\ GFF| 1] 0
[1 SQURce] : PONr : REFer ence: STATe?

This command enables or disables the RF output reference.

*RST 0

Choices ON OFF 1 0

Key Entry Ampl Ref Off On

Remarks Once the reference state is ON, all subsequent output power settings

are set relative to the reference value.

Amplitude offsets can be used with the amplitude reference mode.

284 Chapter 4

Command Reference
Power Subsystem ([:SOURce])

‘POWer:STARt

Supported All

[: SQURce] : POMer: STARE <val ><uni t >
[SQURce] : POMNr: STARE ?

This command sets the amplitude of the first point in a step sweep.

*RST -1.35000000E+002

Range Refer to “:POWer[:LEVel][:IMMediate][:AMPLitude]” on page 287 for
output power ranges.

Key Entry Ampl Start

Remarks During an amplitude sweep operation, signal generators with Option

1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB and be moved around the whole power range by inputting a
different power level.

‘POWer:STOP

Supported All

[: SOURce] : POMNér: STCP <val ><uni t >
[: SOURce] : POMr: STCP?

This command sets the amplitude of the last point in a step sweep.

*RST -1.35000000E+002

Range Refer to “:POWer[:LEVel][:IMMediate][:AMPLitude]” on page 287 for
output power ranges.

Key Entry Ampl Stop

Remarks During an amplitude sweep operation, signal generators with Option

1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB and be moved around the whole power range by inputting a
different power level.

Chapter 4 285

Command Reference
Power Subsystem ([:SOURce])

:POWer[:LEVel][.IMMediate].OFFSet

Supported All

[SOURce] : POMNér[: LEVel 1[: | Mvedi at e] : OFFSet <val ><uni t >
[SOURce] : POMér[: LEVel][: 1 Mvedi at e] : OFFSet ?

This command sets the power offset value.

*RST +0.00000000E+000

Range —200DB to 200DB

Key Entry Ampl Offset

Remarks This simulates a power level at a test point beyond the RF OUTPUT

connector without changing the actual RF output power. The offset
value only affects the displayed amplitude setting.

You can enter an amplitude offset any time in either normal operation
or amplitude reference mode.

286 Chapter 4

Command Reference
Power Subsystem ([:SOURce])

:POWer[:LEVel][:IMMediate][:AMPL.itude]

Supported All

[SOURce] : POMNér[: LEVel][: 1 Mvedi at e] [: AMPLI t ude] <val ><uni t >
[SOURce] : POMNér[: LEVel 1[: | Mvedi at e] [: AMPLI t ude] ?

This command sets the RF output power.

*RST -1.35000000E+002
Range 20 GHz Models: E8241A & E8251A
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -20 to 13DBM —-20 to 16DBM
> 3.2-20GHz -20 to 13DBM -20 to 20DBM
With Option 1E1
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -135to 11DBM -135 to 15DBM
> 3.2-20GHZ -135to 11DBM —-135 to 18DBM
40 GHz Models: E8244A & E8254A
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -20 to 9DBM —-20 to 15DBM
> 3.2-20GHZz -20 to 9DBM —-20 to 18DBM
> 20-40GHZ -20 to 9DBM —-20 to 14DBM
With Option 1E1
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -135 to 7DBM -135 to 14DBM
> 3.2-20GHZ -135 to 7DBM -135 to 16DBM
> 20-40GHZ -135 to 7DBM -135 to 12DBM
Key Entry Amplitude
Remarks The ranges for this command are specified values from the data sheet.

Chapter 4 287

Command Reference
Pulse Modulation Subsystem ([:SOURce])

Pulse Modulation Subsystem ([:SOURce])

‘PULM:INTernal[1]:DELay

Supported PSG-A Series

[: SOURce] : PULM | NTer nal [1] : DELay <nun®[<ti ne suffi x>] | UP| DOMN

[: SOURce] : PULM | NTer nal [1] : DELay?

This command sets the pulse delay of the internally generated pulse modulation source.

The optional variable [<time suffix>] accepts nS (nhanoseconds) to S (seconds).
*RST +0.00000000E+000

Range Internal Free Run: —(pulse period — 20 nS) to (pulse period — 20 nS)
Internal Triggered & Doublet: 70nS to (pulse period — 20 nS)

Choices <num>[<time suffix>] UP DOWN

Key Entry Pulse Delay

Remarks The range value is dependent on the value set for the pulse period.
Refer to “:PULM:INTernal[1]:PERiod” on page 290 for pulse period
settings.

Refer to “:PULM:INTernal[1]:DELay:STEP” on page 289 for setting
the value associated with the UP and DOWN choices.

288

Chapter 4

Command Reference
Pulse Modulation Subsystem ([:SOURce])

‘PULM:INTernal[1]:DELay:STEP
Supported PSG-A Series

[SOURce] : PULM | NTer nal [1] : DELay: STEP <nun®[<ti ne suffix>]
[SOURce] : PULM | NTer nal [1] : DELay: STEP?

This command sets the step increment for the pulse delay.

The optional variable [<time suffix>] accepts nS (nano-seconds) to S (seconds).

*RST N/A

Range 10nS to (pulse period — 20 nS)

Key Entry N/A

Remarks The value set by this command is used with the UP and DOWN choices

for the pulse modulation delay command. Refer to
“‘PULM:INTernal[1]:DELay” on page 288 for more information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or * RST.
:PULM:INTernal[1]:FREQuency
Supported PSG-A Series

[SOURce] : PULM | NTer nal [1] : FREQuency <val ><uni t >
[SOURce] : PULM | NTer nal [1] : FREQuency?

This command sets the rate of the internal square wave pulse modulation source.

*RST +4.00000000E+002

Range 0.1HZ-10MHZ

Key Entry Pulse Rate

Remarks This command is used when SQUare is the current pulse modulation

type. Refer to “:PULM:SOURce:INTernal” on page 292 for the pulse
modulation type selection.

Chapter 4 289

Command Reference

Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:PERIiod

Supported

PSG-A Series

[SOURce] : PULM | NTernal [1] : PER od <val ><uni t >| UP| DOM
[SOURce] : PULM | NTer nal [1] : PER od?

This command sets the period for the internally generated pulse modulation source.

*RST

Range
Choices

Key Entry

Remarks

+2.00000000E-006
70nS—-42S

<val><unit> UP DOWN
Pulse Period

If the entered value for the pulse period is equal to or less than the
value for the pulse width, the pulse width changes to a value that is
less than the pulse period.

Refer to “:PULM:INTernal[1]:PERiod:STEP[:INCRement]” for setting
the value associated with the UP and DOWN choices.

:PULM:INTernal[1]:PERiod:STEP[:INCRement]

Supported

PSG-A Series

[SOURce] : PULM | NTer nal [1] : PER od: STEP[: | NCRenent] <val ><uni t >
[SOURce] : PULM | NTer nal [1] : PER od: STEP[: | NCRenent] ?

This command sets the step increment for the internal pulse period.

*RST +1.00000000E-006
Range 10nS-42S
Key Entry N/A
Remarks The value set by this command is used with the UP and DOWN choices
for the pulse period command. Refer to “:PULM:INTernal[1]:PERiod”
for more information.
290 Chapter 4

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:PWIDth
Supported PSG-A Series

[: SOURce]: PLM | NTernal [1]: PWDth <nun®[<tine suffix>]| UP| DONW
[SOURce]: PLM | NTernal [1] : PW Dt h?

This command sets the pulse width for the internally generated pulse modulation
source.

The optional variable [<time suffix>] accepts nS (nano-seconds) to S (seconds).

*RST +1.00000000E-006

Range 10nS to (pulse period — 20 nS)

Choices <num>[<time suffix>] UP DOWN

Key Entry Pulse Width

Remarks If the entered value for the pulse width is equal to or greater than the

value for the pulse period, the pulse width will change to a value that
is less than the pulse period.

Refer to “:PULM:INTernal[1]:PWIDth:STEP” for setting the value
associated with the UP and DOWN choices.

‘PULM:INTernal[1]:PWIDth:STEP

Supported PSG-A Series

[: SQURce] : PULM | NTer nal [1] : PW Dt h: STEP <nun®[<ti ne suffi x>]
[SOURce] : PULM | NTer nal [1] : PW Dt h: STEP?

This command sets the step increment for the pulse width.

The optional variable [<time suffix>] accepts nS (nano-seconds) to S (seconds).

*RST +1.00000000E-006

Range 10nS to (pulse period — 20 nS)

Key Entry N/A

Remarks The value set by this command is used by the UP and DOWN choices

for the pulse width command. Refer to “:PULM:INTernal[1]:PWIDth”
for more information.

Chapter 4 291

Command Reference
Pulse Modulation Subsystem ([:SOURce])

‘PULM:SOURCce

Supported PSG-A Series

[: SOURce] : PULM SQURce | NTer nal | EXTer nal
[SQURce] : PULM SOURce?

This command sets the source for the pulse modulation.

*RST INT

Choices INTernal EXTernal

Key Entry Internal Square Int Free-Run Int Triggered Int Doublet Int Gated
Ext Pulse

Remarks N/A

:PULM:SOURce:INTernal
Supported PSG-A Series

[SOURce] : PULM SOURce: | NTer nal SQUar e] FRUN| TRI Gger ed| DOUB et | GATEd
[: SOURce] : PULM SQURce: | NTer nal ?

This command sets the type of internally generated pulse modulation.

*RST FRUN

Choices SQUare FRUN TRIGgered DOUBIlet GATEd

Key Entry Internal Square Int Free-Run Int Triggered Int Doublet Int Gated
Remarks N/A

292 Chapter 4

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:STATe
Supported PSG-A Series

[: SOURce] : PULM STATe ONJ OFF| 1| 0
[SOURce] : PULM STATe?

This command enables or disables pulse modulation for the selected path.

*RST 0

Choices ON OFF 1 0

Key Entry Pulse Off On

Remarks When pulse modulation is enabled, the PULSE annunciator is shown in
the display

Chapter 4 293

Command Reference
SCPI Command Compatibility

SCPI Command Compatibility

:SYSTem:IDN

Supported All
: SYSTem | DN "<string>"

This command modifies the identification string that the *1 DN? query returns. Sending
an empty string returns the query output to its factory shipped setting. The maximum
string length is 72 characters.

*RST N/A
Range N/A
Key Entry N/A
Remarks Modification of the * | DN? query output enables the PSG to identify

itself as another signal generator when it is used as a backwards
compatible replacement.

The display diagnostic information, shown by pressing the
Diagnostic Info softkey, is not affected by this command.

294 Chapter 4

Command Reference
SCPI Command Compatibility

8340B/41B Compatible Commands (firmware > C.01.21)

The tables in this section provide the following:

Table 4-5 on page 296: a comprehensive list of 8340B/41B programming codes, listed in
alphabetical order. The equivalent SCPI command sequence for each supported code is
provided; codes that are not supported by the PSG family are indicated as such in the
command column.

Table 4-6 on page 304: a list of the implemented 8340B/41B programming codes that set
the active function. This table also indicates which codes are compatible with the RB
command (knob), and lists the operation active (OA) query, the increment (up), and the
decrement (down) SCPI commands.

NOTE Compatibility is provided for GPIB only; RS-232 and LAN are not
supported.

Table 4-7 on page 306: information regarding the RM and RE status byte masks.

Table 4-8 on page 307 and Table 4-9 on page 308: information regarding the OS status
bytes #1 and #2.

When using 8340B/41B programming codes, you can:

= set the PSG system language to 8340 for the current session.
Utility > GPIB/RS-232 LAN > Preset Language > 8340B
or
:SYST:LANG “8340”

= set the PSG system language to 8340 so that it does not reset with either preset or
cycling power.

Utility > Power On/Preset > Preset Language > 8340B
or
:SYST:PRESET:LANG “8340"
= set the *1 DN? response to any 8340-like response you prefer.

Use the command :SYSTem:IDN on page 294.

Chapter 4 295

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
Al Leveling, internal POMr : ALC SOURce | NTer nal
A28 Leveling, external diode detector |PO/ér: ALC. SOURce Dl CDe
POMr : ALC. SOURce: EXTer nal : COUPl i ng <val >DB
A3 Leveling, power meter not supported
AK Amplitude marker not supported
AL Alternate state not supported
AMO Amplitude modulation off AML: State CFF| O
AVR: State CGFF| 0
AM1P Amplitude modulation on AML: State CFF| O
AMR: SCURce EXT[1]
AVR: EXTernal [1] : GQUPI i ng DC
AMR: Dept h 100
AMVR: EXTer nal [1] : | MPedance 600
AVR: State ON 1
AS Select alternate state not supported
AT Set attenuator POAer : ATTenuat i on <val ><uni t >
AU Auto not supported
BC Change frequency band not supported
CF Center frequency (step sweep) FREQuency: MODE LI ST
POWMr : MODE FI XED
LI ST: TYPE STEP
I NI Ti at e: OONTi nuous[: ALL] ON 1
LI ST: TR Gger : SOURce BUS
FREQuency: STARt <val ><uni t>
FREQuency: STOP <val ><uni t >
CSs Clear both status bytes *CLS
Cw Set CW frequency FREQuency: MODE CW
FREQuency[: CW <val ><uni t >
DB dB(m) terminator DB
296 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
DF Delta frequency FREQuency: MODE LI ST

PONer : MODE FI XED

LI ST: TYPE STEP

I NI Ti at e: CONTi huous|[: ALL] ON 1
LI ST: TR Gger : SOURce BUS
FREQuency: STARt <val ><uni t>
FREQuency: STCP <val ><uni t >

DN

Step down

supported, see Table 4-6 on page 304

DUO

Display off

Dl SPl ay[: WNDow] [: STATe] OFF| 0

DuU1

Display on

Dl SPl ay[: WNDow] [: STATe] ON 1

EF°

Entry display off

Dl SPl ay[: WNDow] [: STATe] ON 1

EK

Enable knob

not supported

FA

Start frequency (step sweep)

FREQuency: MODE LI ST

PONer : MODE FI XED

LI ST: TYPE STEP

I'NITi at e: CONTi huous|[: ALL] ON 1
LI ST: TR Gger : SOURce BUS
FREQuency: STARt <val ><uni t>

FB

Stop frequency (step sweep)

FREQuency: MDE LI ST

PONer : MODE FI XED

LI ST: TYPE STEP

I NI Ti at e: OONTi nuous[: ALL] ON 1
LI ST: TR Gger : SOURce BUS
FREQuency: STCP <val ><uni t >

FMO

Frequency modulation off

FML:
FMR:

State GFF| 0
State CFF| O

Fm1d

Frequency modulation on

FML:
FMR:
FMR:
FMR:
FMR:

State GFF| 0

SQURce EXT2

EXTer nal 2: COUPl i ng DC
EXTer nal 2: | MPedance 600
State ON 1

FM1®

Frequency modulation sensitivity

FMR[: DEM ation] <val ><unit>

FP

Fast phaselock

supported, but has no effect on PSG Family

Chapter 4

297

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
Gz GHz terminator Gz
Hz Hz terminator HZ
IF Increment frequency TR Gger [: SEQuence] [: | Medi at €]
(Iilr?EQ.Jency[:Q/\}' uP
IL 123b| Input learn data not supported
1P Instrument preset STATus: QUESt i onabl e: POMr: NTRansition 0

STATus: QUESt i onabl e: PONér: PTRansi tion 2
STATus: QUESt i onabl e: PONr: ENABl e 2

STATus: QUESt i onabl e: FREQuency: NTRansi tion O
STATus: QUESt i onabl e: FREQuency: PTRansi ti on 103
STATus: QUESt i onabl e: FREQuency: ENABl e 103
STATus: QUESt i onabl e: MDul ati on: NTRansi tion 0
STATus: QUESt i onabl e: MDul ati on: PTRansi ti on 2
STATus: QUESt i onabl e: MCDul ati on: ENABl e 2
STATus: QUESt i onabl e: CALi brati on: NTRansition O
STATus: QUESt i onabl e: CALi brati on: PTRansition 0
STATus: QUESt i onabl e: CALi brati on: ENABl e 0
STATus: QUESt i onabl e: NTRansition 0

STATus: QUESt i onabl e: PTRansi ti on 696

STATus: QUESt i onabl e: ENABl e O

STATus: OPERat i on: NTRansi ti on 10

STATus: CPERat i on: PTRansi tion 0

STATus: CPERat i on: ENABl e O

*ESE O

*SRE 0

*CLS

*RST

FREQuency[: CW: STEP[: I NCRenent] 1 GH
FREQuency: MLTi pl i er<saved nul tiplier>
POMr[: LEVel][: | Mvedi ate] [: AMPLi tude] O dB
QUTput [: STATe] ON 1

KR Keyboard release not supported
Kz kHz terminator KHZ

MO Marker off not supported
M1 Marker 1 on not supported

298 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
M2 Marker 2 on not supported
M3 Marker 3 on not supported
M4 Marker 4 on not supported
M5 Marker 5 on not supported
MC Marker to CF not supported
MD Marker delta not supported
MO Marker off not supported
MP Marker sweep M1-M2 not supported
MS msec terminator not supported
MZ MHz terminator Mz
NA Configure for network analyzer not supported
OA Output active parameter see Table 4-6 on page 304
OB Output next band frequency not supported
ocC Output coupled parameters not supported
oD Output diagnostic values not supported
OF Output fault values supported, but no equivalent SCPI command sequence
olf Output identification *| DN?
OK Output last lock frequency not supported
oL Output learn data not supported
oM Output mode data not supported
OPAT | Output attenuator supported, but no equivalent SCPI command sequence
OPCF | Output center frequency supported, but no equivalent SCPI command sequence
OPCW | Output CW frequency FREQuency[: CW ?
OPDF | Output delta frequency supported, but no equivalent SCPI command sequence

Chapter 4

299

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence

OPFA | Output start frequency FREQuency: START?

OPFB | Output stop frequency FREQuency: STOP?

OPFM1

Output FM sensitivity

FMR[: DEM ation] ?

OPPL | Output power level POMer[: LEVel][: | Mvedi at e] [: AMPLI t ude] ?
OPSF | Output frequency step size FREQuency[: CW: STEP[: | NCRenent] ?
OPSL | Output power slope supported, but no equivalent SCPI command sequence
OPSN | Output # points in stepped sweep | SWEep: PO Nt s?
OR Output internally measured not supported

power level
(0K} Output status bytes see Table 4-8 on page 307 and Table 4-9 on page 308
PL Set power level POMr : ATTenuat i on: AUTO ON 1

POMer[: LEVel] [: | Medi at €] [: AMPLI t ude] <val ><uni t >

PMO Pulse modulation off PULM STATe CFF| 0
PM1 Pulse modulation on PULM SQURce EXTer nal PULM STATe ON 1
PS Power sweep not supported
RBY Remote rotary knob see Table 4-6 on page 304
RCh Recall instrument state *RCL <reg_nun®[, <seq_nun¥]
RE Mask extended status byte see Table 4-7 on page 306
RFO RF output off QUTPut [: STATe] CFF| 0
RF1 RF output on QUTPut [: STATe] ON 1
RM Mask status byte see Table 4-7 on page 306
RPO RF peaking off command accepted; peaking not required for PSG Family
RP1 RF peaking on command accepted; peaking not required for PSG Family
RS Reset sweep not supported
S1 Sweep, continuous not supported
300 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
S2 Sweep, single not supported
S3 Sweep, manual not supported
SC Seconds terminator not supported
SF Frequency step size FREQuency[: CW: STEP[: | NCRenent] <val ><uni t >
SG Sweep, single not supported
SH Shift prefix not supported
SHA1 |Disable ALC, set power not supported
SHA2 | External source module leveling | not supported
SHAS3 | Directly control POMer : ATTenuat ui on: AUTO CFF| O
linear modulator circuit, POMr: ALJ : STATe] OFF| 0
bypassing ALC POMr: ALC. LEVel <val >DB
SHAK | Immediate YTM peak command accepted; peaking not required for PSG Family
SHAL | Retain multiplication factor on supported, but no equivalent SCPI command sequence
power on/off and preset
SHAM | Pulse modulation enhancement command accepted, but has no effect on PSG Family
SHAZ | Leveling mode = PO/r : ALC. SOURce MvHead
external source module (mm head)| POMr: ALC. LEVel <val >DB
SHCF | Set frequency step size FREQuency[: CW: STEP[: | NCRenent] <val ><uni t >
SHCW | CW increment resolution not supported
SHEF | Restore cal. const. access function | not supported
SHFA | Frequency multiplier FREQuency: MLTi plier <val >
SHFB | Frequency offset FREQuency: CFFSet <val ><uni t >
SHIP | Reset mult. factor to 1, and preset | supported, but no equivalent SCPI command sequence
SHM1 | Diagnostic: M/N, 20/30 freq. not supported
SHM2 | Diagnostic: band, YO not supported
SHM3 | Diagnostic: VCO1, VCO2 freq. not supported

Chapter 4

301

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
SHM4 | Diagnostic: test/display results not supported

SHM5

Diagnostics off

not supported

SHMO

All markers off

not supported

SHMP

Marker sweep, M1-M2

not supported

SHPL

Set power level step

POMer[: LEVel] [: | mredi at e] [: AMPLI t ude] : STEF| :

I NCREnent] <val >

SHPM

Enable 8756A/57A compatibility

not supported

SHPS

Decouple attenuator and ALC
(control ALC independently)

POMr : ATTenuat i on: AUTO CFF| O
POMr: AL : STATe] ON 1
PONer: ALC. LEVel <val >DB

SHRC | Remove save-lock not supported

SHS1 |Blank displays not supported

SHS3 | Display fault diagnostic not supported

SHS10°| Disable display update D spl ay[: WNDow] [: STATe] OFF| 0
SHS11' | Re-enable display update D splay[: WNDow] [: STATe] ON 1
SHSL | Set attenuator from front panel POMr : ATTenuat i on <val ><uni t >
SHST | Zoom function not supported

SHSV | Lock save/recall not supported

SHRF | Disable ALC, set power not supported

SHRP | Tracking calibration command accepted, but has no effect on PSG Family

SHT1 |Testdisplays not supported

SHT2 |Bandcrossing penlift not supported

SHT3 | Display unlock indicators not supported

SHGZ |10 channel not supported

SHMZ |10 subchannel not supported

302 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
SHKZ |Write to 10 not supported
SHHZ |Read from IO not supported
SLO Power slope off POMr : SLCPe: STATe OFF| O
SL1 Power slope on POMer : SLCPe: STATe ON 1
POMr : SLCPe <val ue>[DB/ freqsuf fi x]
SM Sweep, manual not supported
SN Steps, maximum SWEep: PO Nts <val >
SP Set power step size POMer[: LEVel] [: | mredi at e] [: AMPLI t ude] : STEF[:
| NCREment] <val >
ST Sweep time not supported
SV Save instrument state *SAV <reg_nunp[, <seq_nun¥]
SW Swap NA channels not supported
T1 Trigger, free run not supported
T1lb Test GPIB not supported
T2 Trigger, line not supported
T3 Trigger, external not supported
TL Time line not supported
TS Take sweep not supported
UP Up step see Table 4-6 on page 304
a. PSG family uses external detector coupling factor instead of reference voltage.
b. PSG family uses AM2 path and EXT 1 input.
c. Same as DUO on page 297 for PSG family.
d. PSG family uses FM2 path and EXT 2 input.
e. 8340B/41B: sensitivity values <1 MHz are set to 1 MHz;

- - Ta

sensitivity values >1 MHz are set to 10 MHz
PSG Family: sensitivity is set to specified value.
Refer tot he “:SYSTem:IDN” command on page 294 to customize the string returned by *I DN? or A .
RB command emulates knob motion on PSG family.
Saved under seq_num = 0, and note that RC 0 (recall last front panel settings) is not supported.
Same as DUL1 on page 297 for PSG family.
Same as AT on page 296 for PSG family.

Chapter 4 303

Command Reference

SCPI Command Compatibility

Table 4-6 Programming Codes that Set the Active Function;
RB Compatibility; OA Query & UP/DN SCPI Commands
Sets | Compatible| Comp.| Comp. .
Code| Active | with | with | with fffgxg'ﬁg: SCPI Commands
Function| RB (knob) | OA |UP/DN y
POMr : ALC SOURce: EXTer nal : COUPl i ng?
A2 a 0 0 POMer : ATTenuat i on UP
PONer : ATTenuat i on DOAN
POMer : ATTenuati on UP
AT = . POWer : ATTenuat i on DOMN
CF a none
FREQuency[: CW ?
Cw 0 0 0 0 FREQuency[: CW UP
FREQuency[: CW DOMN
DF 0 none
DN decrements active function by step value
FA a 0 FREQuency: STARt ?
FB 0 0 FREQuency: STOP?
FM1 0 0 FMR[: DEVi ati on] ?
PONer[: LEVel][: 1 Mvedi at e] [: AMPLi t ude] ?
PL 0 O 0 0 PONer[: LEVel] [: 1 Medi at e] [: AMPLi t ude] UP
POMer[: LEVel][: 1 Mvedi at e] [: AMPLi t ude] DOAN
RC 0 none
SF a a 0 FREQuency[: CW : STEP[: | NCRenent] ?
PONer : ALC: LEVel ?
SHA3 a a 0 0 POMer : ATTenuat ui on UP
POWer : ATTenuat ui on DOMN
SHAZ a a 0 POMer : ALC: LEVel ?
SHCF 0 0 0 FREQuency[: CW : STEP[: | NCRenent] ?
SHFA a a 0 FREQuency: MULTi plier?
SHFB 0 0 0 FREQuency: OFFSet ?
304 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-6 Programming Codes that Set the Active Function;
RB Compatibility; OA Query & UP/DN SCPI Commands
Sef[s Compatlble Co_mp. Co_mp. Equivalent SCPI Commands
Code | Active with with | with for OA Query and UP or Down
Function| RB (knob) | OA |UP/DN y
PONer[: LEVel][: | mredi at e] [: AMPLI t ude] :
SHPL . . . STEP[: | NCREnent] ?
POWer : ALC: LEVel ?
SHPS 0 0 0 0 POWer : ATTenuat i on UP
POWer : ATTenuat i on DOMN
POWeér : ATTenuati on UP
SHSL . . POWer : ATTenuat i on DOMN
SL1 a none
SN 0 0 0 SWEep: PO Nt s?
POMer[: LEVel][: I mredi at e] [: AMPLI t ude] :
SP . . . STEP[: | NCREnent | ?
SV 0 none
upP increments active function by step value

Chapter 4

305

Command Reference

SCPI Command Compatibility

Table 4-7 8340 Status Byte Masks
Bit Number 7 6 5 4 3 2 1 0
Decimal 128 64 32 16 8 4 2 1
Value
RM Mask
Function
SRQ on New GPIB |End of RF Change in |Numeric Any
frequencies syntax |sweep settled extended |entry front panel
or error status byte |completed |[key
sweep time (GPIB or pressed
in effect front panel)
Request
Service
(RQS)
PSG Bit(s) 0 #6 #5 #3 #1 #3 0 0
Status Group Std Operation|Operation
Event
Register Service Event |Event Event Service
Request |Enable |Enable Enable Request
Enable Enable
Notes:

Enable/disable Bit #7 of Service Request Enable Register based on Operation Status Group Event Enable Register.
Enable/disable Bit #5 of Service Request Enable Register based on Std. Event Status Group Event Enable Register.

RE Mask
Function Fault RF Power |RF Ext. Freg. |Ovencold |[Over Self test
indicator |unleveled |failure |unlocked |Ref. selected modulation |failed
on
PSG Bit(s) #5 #3 #7 #5 Implemented #4 #7 #9
(condition
only)
Status Group
Data Questionable O O O O O O
Standard Event U
Register Event Event Event |Event Event Event Event
Enable Enable Enable |Enable Enable Enable Enable
306 Chapter 4

Command Reference

SCPI Command Compatibility

Table 4-8 8340 OS Status Byte #1
Bit Number 7 6 5 4
Decimal Value 128 64 32 16
Function

SRQ on New frequencies GPIB syntax error End of sweep

gcveep time in effect
Request Service (RQS)

PSG Bit(s) 0 #6 #5 #3

Status Group Standard Event Operation

Register Status Byte Event Event—Negative transition
Bit Number 3 2 1 0
Decimal Value 8 4 2 1
Function

SRQ on RF settled Change in Numeric entry completed |Any

extended status byte|(GPIB or front panel) front panel key pressed

PSG Bit(s) #1 Implemented 0 0

Status Group|Operation

Register

Event—Negative transition

Chapter 4

307

Command Reference
SCPI Command Compatibility

Table 4-9 OS Status Byte #2
Bit Number 7 6 5 4
Decimal Value 128 64 32 16
Function Fault indicator on RF unleveled Power failure| RF unlocked
PSG Bit(s) #0—2 #5 #1 #3 #72 #0—2 #5
and and
#5—6 #5—6
Status Group|Data Data Data Data Std Event Data Data
Questionable| Questionable |Questionable|Questionable Questionable|Questionable
Frequency |[(Summary) Power (Summary) Frequency |(Summary)
Register Condition Event— Condition Event— Event Condition Event—
Pos. transition Pos. transition Pos. transition
a. Cleared by IP
Bit Number 3 2 1 0
Decimal Value 8 4 2 1
Function Ext. Freq. Ref. selected |Oven cold Over modulation Self test failed
PSG Bit(s) Implemented #4 #1 #7 #9
(condition only)
Status Group Data Questionable |Data Data Data Questionable
Questionable [Questionable
Modulation (Summary)
Register Condition Condition Event— Event—
Pos. transition |Pos. transition
308 Chapter 4

836xxB/L Compatible SCPI Commands

Command Reference

SCPI Command Compatibility

Table 4-10 is a comprehensive list of 836xxB/L SCPI commands arranged by subsystem.
Commands that are supported by the PSG Family are identified, in addition to commands
that are unsupported. Use the legend within the table to determine command compatibility.

Some of the PSG supported commands are a subset of the 836xxB/L commands. When this
occurs, the syntax supported by the PSG is shown in addition to the syntax that is not

supported.

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family 836;%108 836‘3%
IEEE Common Commands
*CLS Y Y
*ESE <dat a> Y Y
* ESE? Y Y
* ESR? Y Y
*| DNP@ Y Y
*LRN? N N
*QOPC Y Y
*PC? Y Y
*COPT? N N
*RCL <reg_nune Y Y
*RST Y Y
*SAV <reg_nune Y Y
*SRE <dat a> Y Y
* SRE? Y Y

Chapter 4 309

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family 835‘108 835%
*STB? Y Y
*TRG Y Y
*TST? Y Y
*\WA| Y Y
Abort Subsystem
: ABCR Y Y
Amplitude Modulation Subsystem
: AM : DEPTh] <nun®[PCT] | MAXi munj M Nl nunj <nun»DB Y
: AM : DEPTh] ? [MM nunj M N munj
: AM | NTer nal : FREQuency <nun[<freq suffix>]| MAX numj
M N mum
: AM | NTer nal : FREQuency? [MAXi mumj M N munj Y
:AM | NTer nal : FUNCti on Sl Nusoi d| SQUar e| TR angl e] RAMP| NO Se Y
:AM | NTer nal : FUNCti on? Y
: AM SQURce | NTer nal | EXTer nal Y
: AM SQURce? Y
: AM MODE DEEP| NORVal Y
: AM MCDE? Y
: AM STATe ON CFF| 1|0 Y
: AM STATe? Y
: AM TYPE LI Near | EXPonent i al Y
: AM TYPE? Y
310 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family 83508 835%
Calibration Subsystem
: CALi bration: AM AUTO ON| OFF| 1] 0 N
: CALi brati on: AM AUTO? N
: CALi brati on: AM : EXEQuL €] N
: CALi brati on: PEAKI ng: AUTO QN OFF| 1] 0 N N
: CALi brat i on: PEAKi ng: AUTO? N N
: CALi brat i on: PEAKI ng[: EXEQuUt €] N N
: CALi bration: PMETer : DETector: | NI Ti at e? | DETect or | DI CDe N N
: CALi brati on: PMETer : DETect or : NEXT? <nun®[<l vl suffix>] N N
: CALi brati on: PMETer : FLATness: | NI Ti at e? USER D CDe| PMETER| N N

MvHead

: CALi brati on: PMETer : FLATness: NEXT? <val ue>[<l vl suffix>] N N
: CALi brati on: SPAN AUTO QN OFF| 1| O N N
: CALi brat i on: SPAN AUTO? N N
: CALi brat i on: SPAN : EXEQuUt €] N N
: CALi brati on: TRACK N N
Correction Subsystem
: QORRect i on: ARRay[i] {<val ue>[DB] } N N
: OORRect i on: ARRay[i]? N N
: OORRect i on: FLATness {<nun®[freq suffix], <nune[DB] } 2*801 N N
: CORRect i on: FLATness? Y Y
: OORRection: SOURce[i] ARRay| FLATness N N
: CORRect i on: SOURce[i]? N N

Chapter 4 311

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

: OORRect i on: FLATness: PO Nt s? [MAXi mumj M N nunj

Y

Y

: OORRection[: STATe] ONN CFF| 1|0

Y

Y

: QORRect i on[: STATe] ?

Diagnostics Subsystem

: D AGhosti cs: ABUS? <val ue>

: Dl AGhost i cs: ABUS: AVERage <val ue>

: DI AGnhost i cs: ABUS: AVERage?

: D AGhost i cs: ABUS: STATus?

: D AGhost i cs:

I NSTr unent :

PMETer : ADDRess <val ue>

: Dl AGhost i cs:

| NSTr unent :

PMETer : ADDRess?

: D AGhost i cs:

I NSTr unent :

PR N er: ADDRess <val ue>

: D AGhost i cs:

I NSTr unent :

PRI Nt er : ADDRess?

: Dl AGhost i cs:

| CRW <val ue>, <val ue>

: D AGhosti cs:

| CRW <val ue>

: D AGhost i cs:

QUTPut : FAULt ?

: Dl AGhost i cs:

RESul t ?

: D AGhosti cs:

TEST: CONTi nue

: D AGhost i cs:

TEST: DATA: DESC?

: Dl AGhost i cs:

TEST: DATA: MAXi mun®

: D AGhost i cs:

TEST: DATA' M N mun?®

: D AGhosti cs:

TEST: DATA: VALue?

: Dl AGhosti cs

: TEST: Dl Sabl e {<num»}1*?| ALL

Z|lz|\z|z2z|zZ2|z2|z2z|zZ2|zZ2|Z2|Z2|zZ2|Z2|2|Z2|2|2)|Z

Z|lz|\z|z2z|zZ2|z2|z2z|zZ2|z2|Z2|zZ2|zZ2|Z2|2|2Z2|2|2)|Z

312

Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family 83508 835%
: Dl AGhost i cs: TEST: ENABI e {<nun®} 1*?| ALL N N
: Dl AGhost i cs: TEST[: EXEQUt €] <val ue> N N
: Dl AGhost i cs: TEST: LOG SOURce ALL| FAI L N N
: Dl AGhost i cs: TEST: LOG SQURce? N N
: Dl AGhost i cs: TEST: LOJd : STATe] ? N N
: Dl AGhost i cs: TEST: LOY : STATe] ON OFF| 1] 0 N N
: Dl AGhost i cs: TEST: LOCP QN OFF| 1| O N N
: Dl AGhost i cs: TEST: LOCOP? N N
: Dl AGhost i cs: TEST: NAME? [<val ue>] N N
: Dl AGhost i cs: TEST: PO Nt s? N N
: Dl AGhost i cs: TEST: RESul t ? [<val ue>] N N
: Dl AGhosti cs: TI NT? <val ue> N N
Display Subsystem
: DI SPl ay[: STATe] ON CFF| 1|0 Y Y
: DI SPl ay[: STATe] ? Y Y
Frequency Modulation Subsystem
:FM COUPl i ng AC DC Y
: FM COUPI i ng? Y
:FM : DBEVi ation] <val ><uni t>] MAi munj M Nl num Y
:FM:DEViation]? [MAX nmuni M N nunj Y
:FM FI LTer: HPASs <nun¥[<freq suffix>] | MM nunf M N mum N
:FM FI LTer: HPASs? [MAXi nurmj M N munj N

Chapter 4 313

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family 83620B 83620L

N= Not supported by PSG Family 83508 835%

: FM I NTer nal : FREQuency <nun[<freq suffi x>] | MAX nmumnj Y
M N mum

: FM I NTer nal : FREQuency? [MAXi nurmj M N munj Y

:FM I NTernal : FUNC i on Sl Nusoi d| SQUar e| TR angl e] RAMP| NO Se Y

:FM I NTer nal : FUNCti on? Y

: FM SQURce | NTer nal | EXTer nal Y

- FM SQURce? Y

"FM SENSitivity <val ><freq suffix/ V> MM numf M N mum Y

:FM SENSi tivity? [MAX munj M N nunj Y

: FM STATe ON OFF| 1|0 Y

: FM STATe? Y

Frequency Subsystem

: FREQuency: CENTer <nune[<freq suffix>]| MAX munj M N nunj Y Y
UP| DO

: FREQuency: CENTer ? [MAXi murmj M N munj

: FREQuency[: CW: FI Xed] <nunp[<freq suffix>]| MAX num Y Y
M N munj UP| DOMN

: FREQuency[: CW? [MAX nunj M N nunj Y Y

: FREQuency[: Fl Xed] ? [MAXi numj M N nrunj Y Y

: FREQuency[: CW: AUTO ON| OFF| 1] 0 N N

: FREQuency[: CW : AUTO? N N

: FREQuency[: FI Xed] : AUTO ON CFF| 1] 0 N N

: FREQuency[: FI Xed] : AUTO? N N

314

Chapter 4

Table 4-10

836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

: FREQuency:

DOMNN

MANual <nun®[freq suffix] | MAX munj M N nunj UP|

N

N

: FREQuency:

MANual ? [MAX munj M N nuni

: FREQuency:

MODE FI Xed| CW SWEep| LI ST

: FREQuency:

MCODE?

: FREQuency:

MULTi pl i er <nunk| MAX nunj M N mun?

<|<|=<| 2z

<| <|=<| 2z

: FREQuency:

MALTi plier? [MX munmj M N nunj

: FREQuency:

MULTi pl i er: STATe ON GFF| 1| O

: FREQuency:

MULTi pl i er: STATe?

: FREQuency:

CFFSet <nun®| MAX munj M N num

: FREQuency:

CFFSet 2 [MAXi murj M Ni runj

: FREQuency:

COFFSet : STATe ON OFF| 1] 0

: FREQuency:

CFFSet : STATe?

: FREQuency:

DOMN

SPAN <nun¥[<freq suffix>]| MM nurm M N rmunj UP|

<|<|=<|=<|=<|z|z|<

<|<|=<|=<|=<|z|z|<

: FREQuency:

SPAN? [MAXI mumi M N nunj

: FREQuency:

DOM

STAR <nunp[<freq suffix>]| M mumj M N munj UP|

: FREQuency:

STAR ? [MAXi mumj M N munj

: FREQuency:

STEP: AUTO ON| OFF| 1] 0

: FREQuency:

STEP: AUTO?

: FREQuency:

M N mum

STEP[: I NCRenent] <nurp[<freq suffix>] | MAXi nunj

<| <] <| <

<| <] <| =<

: FREQuency:

STEP[: | NCRenent] ?

Chapter 4

315

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

: FREQuency: STOP <nun¥[<freq suffix>]| MM nurm M N munj UP|
DO

Y

Y

: FREQuency: STCGP? [MAX munj M N nunj

Initiate Subsystem

:I'NITi at e: CONTi nuous ON| CGFF| 1] 0

;I NI Ti at e: CONTi nuous?

INITiate[: 1 Medi at e]

<

<

List Subsystem

;LI ST: DWELI {<nun®[<tine suffix>]| MX munj M N nun}

;LI ST: DWELI 2 [MAXi nunj M N mun

:LI ST: DWELI : PO Nt s? [MAXE numf M N munj

: LI ST: FREQuency {<val ue>[<freq suffix>]| MM numj M N nunj

: LI ST: FREQuency?

: LI ST: FREQuency: PO Nt s? [MAX munj M N munj

;LI ST: MANual <nunp

: LI ST: MANual ?

: LI ST: MCDE AUTQ MVANual

. LI ST: MODE?

: LI ST[: PO/Xér] : OORRect i on {<val ue>[DB] | MMXi nunj{ M N rmun}

: LI ST[: PO/ér] : CORRect i on?

;LI ST[: PO/Xr] : CORRecti on: PO Nt s? [MAX munj M N nunj

: LI ST: TR Gger : SOURce | Mvedi at e| BUS| EXTer nal

<|lzlz|lz|<|=<|=<|=<|=<|=<|=<|=<|=<|<x<

<|lzlz|lz|<|=<|=<|=<|=<|=<|=<|=<]|=<|<x<

316

Chapter 4

Table 4-10

836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

- LI ST: TR (ger : SOURce?

Y

Y

Marker Subsystem

: MARKer [n] :

AVPLI t ude[: STATe] ON| OFF| 1| 0

: MARKer [n]:

AVPLI t ude[: STATe] ?

: MARKer [n] :

AVPLI t ude: VALue <val ue>[DB] | MAXi mun} M N num

: MARKer [n] :

AVPLI t ude: VALue? [MAXi mnumj M N munj

: MARKer [n]:

ACFF

: MARKer [n] :

DELTa? <val ue>, <val ue>

: MARKer [n] :

M N nmum

FREQuency <val ue>[<freq suffix>]| MAXi numn

zZ|lz|z2z| 2| 2| 2| Z

zZ|lz|z|z2| 2| 2| Z

: MARKer [n]:

FREQuency? [MAX munj M N nunj

: MARKer [n] :

MODE FREQuency| DELTa

: MARKer [n] :

MCDE?

: MARKer [n]:

REFer ence <n>

: MARKer [n] :

REFer ence?

: MARKer [n] [: STATe] ON OFF| 1|0

: MARKer [n] [: STATe] ?

zZ|lz|\z2|z2|Z2| 2| Z

zZ|lz|z2|z2|2Z2| 2| Z2

Measure Subsystem

- MEASuUr e: AVP

2

. MEASur e: FMV?

Modulation Subsystem

: MODul at i on: QUTPut : SOURce AM FM

: MODul at i on: QUTPut : SQURce?

Chapter 4

317

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

- MODul at i on: QUTPut : STATe ON| CFF| 1] 0

Y

: MDul at i on: QUTPut : STATe?

Y

: MDul ati on: STATe?

Power Subsystem

: PONer :

ALC BANDW dt h| : BWDth <val ue>[<freq suffix>]|

MAX mumi M N mum

: PONer :

ALC. BANDwi dt h?| : BWDth? [MO mum M Ni muni

. POver

- ALC: BANDW dt h| : BW Dt h: AUTO QN CFF| 1] 0

. PONer

: ALC. BANDwi dt h| : BW Dt h: AUTO?

: PONer :

ALC CFACt or <val ue>[DB] | MAXi mumj M N nunj UP| DO

: POMer :

ALC CFACtor? [M N num NAX munj

: POMer :
. PONer

ALC. SOURce PMETer

: ALC SOQURce | NTer nal | DIl ODe| MvHead

: PONer :

ALC. SOURce?

: POMer :

AL : STATe] ON CFF| 1|0

: POMer :

AL : STATe] ?

. PONer

:AVPLI fier: STATE ON OFF| 1| 0

: POVer :

AVPLI fi er: STATE?

: POMer :

AMPLI fi er: STATE: AUTO ON| OFF| 1] 0

: POMer :

AMPLI f i er: STATE: AUTO?

. POver

: ATTenuat i on <nune[DB] | MAX rmunj M Ni nunj UP| DOM

. PONer

: ATTenuati on? [MAX nuni M N nunj

<|=<|lz|lz|lz|lz|<|=<|<|=<z|<|<|=<|=<]|<x<

<|=<|lz|lz|lz|lz|<|=<|<|=<z|=<|<|=<|=<|<x<

318

Chapter 4

Table 4-10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

: POVer :

ATTenuat i on: AUTO ON CFF| 1] 0

Y

Y

: PONer :

ATTenuat i on: AUTO?

: POMer :

CENTer <nun®[<l vl suffix>]|MX muni M N munj UP| DOAN

: POMer :

CENTer ? [MAXi numjf M N munj

:POMer[: LEVel] <nuny[<lvl suffix>]|MWX numj M N rmunj UP)|

DOM

<| <] =<| =<

<| <] =<| =<

:POMer[: LEVel 1? [MAX nuni M N nmunj

: POMer :

MODE FI Xed| SWEep

: POMer :

MCDE?

: PONer :

OFFSet <nuny[DB] | MAXI munj M N munj UP| DOMN

: POMer :

OFFSet ? [MAi mumj M Ni nuni

: POMer :

OFFSet : STATe ON| OFF| 1/ 0

: PONer :

CFFSet : STATe?

: POMer :

DOMN

RANGe <val ue>[<l vl suffix>]| MAX munj M N nunj UP)|

Z| <| <|<|=<|=<|=<|=<

Z| <] <|<|=<|=<|=<|=<

: POMer :

RANGe?

. PONer

- SEARch ON| OFF| 1| 0] ONCE

: POVer :

SEARch?

: POMer :

SLCPe <val ue>[DB/ <freq suffix>]| M N MAX UP| DOAN

: POMer :

SLCPe? [MAX nunj M N nunj

. POver

: SLOPe: STATe ON CFF| 1] 0

: POMer :

SLCPe: STATe?

: POMer :

SPAN <val ue>[DB] | MAXi munj M N munj UP| DOMN

<| <|=<|=<|=<|=<|=<|2z

<| <|=<|=<|=<|=<|=<|2z

Chapter 4

319

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

- POMr : SPAN? [MAXi mum) M N muni

<

<

: POMer: STAR <val ><uni t >| MAX nmunj M N nunj UP| DOM

: POMer: STAR ? [MAX nuni M N nunj

: POnMer: STATe ON OFF| 1| 0

. PONer : STATe?

: POWer : STEP: AUTO ON| CFF| 1| O

. POMer : STEP: AUTO?

: POMer: STEP[: | NCRenent] <nune[DB] | MMXi mnunj M N hum

: POMer: STEP[: | NCRenent] ? [MAXi nunj M N munj

: POMr : STCP <val ><uni t >| M munj M N murrj UP| DOMN

: POer: STCP? [MMXi nunj M N muni

< | <|=<|=<|=<|=<|=<|=<|=<|x

< | <|=<|=<|=<|=<|=<|=<|=<|x

Pulse Modulation Subsystem

: PULM EXTer nal : DELay <val ue>[<time suffix>]| MAX numj
M N mum

2

: PULM EXTer nal : DELay? [MAX mumj M N munj

: PULM EXTernal : PQLarity NCRval | | NVerted

: PULM EXTer nal : PCLarity?

: PULM | NTer nal : FREQuency <nurp[<freq suffi x>] | MAX rmunj
M N mum

<|<|=<| 2z

: PULM | NTer nal : FREQuency? [MAXi munj M N nunj

<

: PULM | NTer nal : GATE ON| CFF| 1| O

: PULM | NTer nal : GATE?

320

Chapter 4

Table 4-10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

:PULM | NTer nal : PER od <nune[<time suffix>]| MAX runj
M N mum

Y

: PULM | NTer nal : PER od? [MAXi munj M N nunj

: PULM | NTer nal : TRI Gger : SOURce | NTer nal | EXTer nal

: PULM | NTer nal : TR Gger : SQURce? [MAXi nunj M N rmunj

: PULM | NTer nal : WDTh <nun®[<tinme suffix>]| M mumjf M N mum

: PULM | NTer nal : WDTh? [MAX mumj M N munj

: PULM SLEW <val ue>[<ti ne suffix>] | MM munj M N num

: PULM SLEVW? [MAXi nunj M N muni

: PULM SLEW AUTO QN CFF| 1] 0

: PULM SLEW AUTCO?

: PULM SQURce SCALar
: PULM SQURce | NTer nal | EXTer nal

: PULM SQURce?

- PULM STATe ON OFF| 1|0

: PULM STATe?

<|<|=<|=<z|z|lz|lz|lz|=<|<|=<]|=<|<

Pulse Subsystem

: PULSe: FREQuency <nune[<freq suffix>]| MM nunj M N nmum

: PULSe: FREQuency? [MAXI mumf M N munj

: PULSe: PER od <nun»[<tine suffix>]| MM nunf M N mum

: PULSe: PER od? [MAXi nunj M N munj

: PULSe: WDTh <nunp[<tine suffix>]| MX nunj M N hum

: PULSe: WDTh? [MM nunmi M N nunj

<| <] <|=<|=<|=<

Chapter 4

321

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

Reference Oscillator Subsystem

:RC8G | | at or: SOURce?

:ROSA | | ator: SOURce: AUTO QN CFF| 1] 0

:RC8G | | at or : SQURce: AUTO?

:ROSA | | ator: SOURce | NTer nal | EXTer nal | NONE

<| <] =<| =<

<| <] =<| =<

Status Subsystem

: STATus:

OPERat i on: CONDi ti on?

. STATuS:

CPERat i on: ENABl e <val ue>

. STATuS:

CPERat i on: ENABI e?

: STATus:

CPERation[: EVENt] ?

. STATuS:

CPERat i on: NTRansi ti on <val ue>

. STATuS:

CPERat i on: NTRansi ti on?

: STATus:

OPERat i on: PTRansi ti on <val ue>

. STATuS:

CPERat i on: PTRansi ti on?

. STATuS:

PRESet

: STATus:

QUESti onabl e: CONDi ti on?

. STATuS:

QUESt i onabl e: ENABl e <val ue>

. STATuS:

QUESt i onabl e: ENABI e?

: STATus:

QUESti onabl e[: EVEN] ?

. STATuS:

QUESti onabl e: NTRansi ti on <val ue>

. STATuS:

QUESt i onabl e: NTRansi ti on?

: STATus:

QUESti onabl e: PTRansi ti on <val ue>

<| <] <|<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|<x

<| <] <|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|<x

322

Chapter 4

Table 4-

10

836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

: STATus: QUESt i onabl e: PTRansi ti on?

Y

Y

Sweep Subsystem

: SVEEep:

CONTr ol

: STATe ONJ OFF| 1] 0

: SVEep:

QCONTT ol

. STATe?

- SViEep:

CONTr ol

: TYPE NMASTer | SLAVe

: SViEep:

CONTr ol

: TYPE?

: SVEep:

DWELlI <nunp[<time suffix>]| MAX munj M N num

- SViEep:

DVWELI 2 [MA mum] M Ni munj

- SViEep:

DWELI : AUTO O\ CFF| 1] 0

: SVEep:

DWELI : AUTO?

- SViEep:

CENer at i on STEPped| ANALog

- SViEep:

CENer at i on?

: S\VEep:

MANual : PO N <nune| MAX nunj M N mum

- SViEep:

MANual : PO N? [MAX numi M N mund

- SViEep:

MANual [: RELati ve] <val ue>

: S\VEep:

MANual [: RELat i ve] ?

- SVEep:

MARKer : STATe ONJ GFF| 1] 0

- SViEep:

MARKer : STATe?

: SVEep:

MARKer : XFER

- SViEep:

MCDE AUTQ MANual

- SViEep:

MCDE?

: S\Eep

:PANs <nun»| MAX nunj M N mum

<| K| <|Z2|Z2|Z2|Z2|Z2| X | <|Z2|Z2|Z2|Z2|<|<x|2Z2|Z2|2)|Z2

| K| <|Z2|Z2|Z2|Z2|Z2| X | <|Z2|Z2|Z2|Z2|<|<|2Z2|2|2)|Z2

Chapter

4

323

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83620B
&
83640B

83620L
&
83640L

: SWEep: PO Nt s? [MAXI nunj M N munj

<

<

: SWEep: STEP <val ue>[<freq suffix>] | MM nunf M N mum

: SWEep: STEP? [MMXi nunj M N muni

: SWEep: TI ME <val ue>[<tine suffix>]| MAX nunj M N mum

: SWEep: TI ME? [MAXi nunj M N muni

: SWEep: TI ME: AUTO ON| CFF| 1| O

: S\VEep: TI ME: AUTO?

: SWEep: TIME LLIMt <val ue>[<tinme suffix>]| M mumf M N mum

: SWEep: TIME LLIM t? [MAX numi M N nunj

: SWEep: TR Cger : SOURce | Mvedi at e| BUS| EXTer nal

: SViEEep: TR ger : SOURce?

<|<|Z2|Z2|2Z2|2| 2| 2| 2| Z

<|<|Z2|Z2|2Z2|2|2Z2| 2| 2| Z

System Subsystem

: SYSTem ALTer nat e <val ue>| MAX munj M Ni hum

: SYSTem ALTer nat e? [MAX numf M N munj

: SYSTem ALTer nat e: STATe ON OFF| 1] 0

: SYSTem ALTer nat e: STATe?

: SYSTem COWMUNi cat e: GPl B: ADDRess <nunber >

: SYSTem DUVP: PR Nt er ?

: SYSTem ERRor ?

: SYSTem LANGQuage A IL| COwPati bl e
: SYSTem LANQuage SCPI

: SYSTem MvHead: SELect : AUTO ON CFF| 1] O

: SYSTem MMead: SELect : AUTO?

<| K| <KZ2|<|2Z2|<|2Z2|2|2| 2

<| K| <KZ2|<|2Z2|<|2Z2|2|2| 2

324

Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family 836;%108 8389:10'_
: SYSTem MvHead: SELect FRONE | REAR| NONEC Y Y
: SYSTem MVHead: SELect ? Y Y
: SYSTem PRESet [: EXECut €] Y Y
: SYSTem PRESet : SAVE Y Y
: SYSTem PRESet : TYPE FACTory| USER Y Y
: SYSTem PRESet : TYPE? Y Y
: SYSTem SEQuri ty: COUN <val ue>%€ Y Y
: SYSTem SECQurity: COUN ? [M N nurmj MAX munj Y Y
: SYSTem SEQuri ty[: STATe] ON OFF| 1] 0© Y Y
: SYSTem SECQuri ty[: STATe] ? Y Y
: SYSTem VERS on? Y Y
Trigger Subsystem
: TR Gger [: | Medi at e] Y Y
: TR Gger: CDELay <val ue>[time suffix]| MM nunj M N mum N N
: TR Gger : CDELay? [MAXi numj M N munj N N
: TR Gger: SOURce | Mvedi at e| BUS| EXTer nal Y Y
: TR Gger : SOURce? Y Y
Tsweep Subsystem
- TSWeep N N
Unit Subsystem
:UNI T: AM DB| PCT N
UNIT: AP N

Chapter 4 325

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &
83640B 83640L
CUNIT: PONer {<lvl suffix>} Y Y
UNIT: POVer ? Y Y

a. The identification information can be modifed for the PSG to reflect the signal generator that is being replaced.

Refer to “:SYSTem:IDN” on page 294 for more information.

b. A multiplier of zero is not allowed.

c. Since the PSG Family signal generators have no front panel millimeter head (source module) interface connector,

the “FRONT” suffix defaults to the rear connector.

d. Flash memory allows only a limited number of “writes and erasures”, excessive use of this command will reduce

the memory lifetime.

e. This command can take several hours to execute because the PSG memory size is much larger than the HP

836Xxx memory.

326

Chapter 4

8373xB and 8371xB Compatible SCPI Commands

Command Reference

SCPI Command Compatibility

Table 4-11 is a comprehensive list of 8373xB and 8371xB SCPI commands arranged by
subsystem. Commands that are supported by the PSG Family are identified, in addition to
commands that are unsupported. Use the legend within the table to determine command

compatibility.

Some of the PSG supported commands are subsets of the 8373xB and 8371xB commands.
When this occurs, the syntax supported by the PSG Family is shown in addition to the syntax

that is not supported.

Table 4-11 8373xB and 8371xB SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

IEEE Common Commands

*CQLS

*DMC

*EMC

*EMC?

*ESE <dat a>

*ESE?

*ESR?

*aQue?

*| DN?2

<|lz|<|=<|=<|z|z|2z]|<<

<|lzl<|=<|=<|z|z|2z]|<<

*LMC?

*LRN?

*CPC

*CPC?

*OPT?

2| <| <] 2| Z

2| <| <] 2| Z

Chapter 4

327

Command Reference

SCPI Command Compatibility

Table 4-11

8373xB and 8371xB SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

*PMC

2

z

*PSC

*PSC?

*RCL <reg_nune

*RMC

*RST

*SAV <reg_nune

*SRE <dat a>

* SRE?

*STB?

*TST?

*WA

<| <] <|=<|=<|=<|=<|zZ|=<|=<]|<

<| <] <|=<|=<|=<|=<|zZ|=<|=<]|<

Abort Subsystem

: ABCR

Amplitude Modulation Subsystem

[SOURce] : AM : DEPTh] <val ><uni t >

[SOURce] : AM : DEPTh] <nun¥[<PCT>] | <nunm»DB

[: SOURce] : AM : DEPTh] : STEP[: | NCRerrent] i ncr | M N nmunj

MAXi mun DEFaul t

[SOURce] : AM | NTer nal : FREQuency <nunp[<freq suffix>]

M N nunj MAX rrunj DEFaul t

i ncr

[SOURce] : AM | NTer nal : FREQuency: STEP[: | NCRenent]

328

Chapter 4

Table 4-11 8373xB and 8371xB SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[SOURce] : AM | NTernal : FUNCti on Sl Nusoi d| SQuar e] TR angl e|
RAMP| NO Se| UNI For nj GAUSsi an

Y

: SOURce] : AM SENSi tivity <val > M N MAX| DEF

: SOURce] : AM SQURce FEED
: SOURce] : AM SOURce | NTer nal | EXTer nal

: SQURce] : AM SQURce?

: SOURce] : AM STATe ON OFF

: SOURce] : AM STATe?

: SQURce] : AM TYPE LI Near | EXPonent i al

[
[
[
[
[
[
[
[

: SOURce] : AM TYPE?

<|<|<|=<|=<|=<2z| 2z

Display Subsystem

: DI SPlay[: WNDow| [: STATe] QN CFF| 1] 0

<

: DI SPl ay[: WNDow [: STATe] ?

Initiate Subsystem

:I'NITi at e: CONTi nuous ON| CGFF| 1] 0

21 NI Ti at e: CONTi nuous?

Correction Subsystem

[: SQURce] : CCRRect i on: FLATness[: DATA] <freg>, <corr. >, ...
<freqg> <corr.>

SOURce] : OCORRect i on: FLATness: PO Nts <poi nt s>

SOURce] : CCRRect i on[: STATe] ?

[:
[SOURce] : CORRect i on[: STATe] ON| OFF
[:
[:

SOQURce] : CCORRect i on: CSET[: SELect] tabl eno

z| <| <| <

z| <| <| <

Chapter 4

329

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[SOURce] : CCRRect i on: CSET[: SELect] ?

N

N

[SOURce] : CORRect i on: CSET: STATe QN GFF| 1] 0

N

N

[SOURce] : CCRRect i on: CSET: STATe?

N

Frequency Modulation Subsystem

SQURce] : FM COUPl i ng A DC

[:
[: SOURce] : FM CQOUPI i ng?
[: SQURce] : FM : DEVi ation] <val ><unit>

[: SOURce]: FM : DEVi ation] : STEF[: | NCRenent] <val >
[<freq suffix>]

<| <] =<| =<

[SOURce] : FM | NTer nal : FREQuency <nunp[<freq suffi x>]

[SQURce] : FM | NTer nal : FREQuency: STEP[: | NCRenent] i ncr |
M N nunj MAX rrunj DEFaul t

[SOURce] : FM | NTernal : FUNCXi on Sl Nusoi d| SQUAr e] TR Angl €|
RAMP| UNI For m} GAUSsi an

SQURce] : FM SENSitivity?

SOQURce] : FM SOURce FEED

SCURce] : FM STATe ON CFF| 1] 0

[:
[:
[SOURce] : FM SQURce | NTer nal | EXTer nal
[:
[:

SQURce] : FM STATe?

<| <| <zl <

Frequency Subsystem

[SOURce] : FREQuency[: CW: FI Xed] <nun®[<freq suffix>]| UP|
DOM| DEFaul t

[SOURce] : FREQuency|[: CW: FI Xed] [MAXi numj M N nunj DEFaul t]

[SOURce] : FREQuency|[: CW: FI Xed] : STEP <val ><uni t >

330

Chapter 4

Table 4-11

8373xB and 8371xB SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[SQURce] : FREQuency[: CW: FI Xed] : STEP?

Y

Y

[: SOURce] : FREQuency: MULTi pl i er <val > UP| DOAN DEFaul t b

Y

Y

[: SOURce] : FREQuency: MULTi pli er?

[SOURce] : FREQuency: MULTi pli er: STEF[: | NCRenent] i ncr
M N nunj MAX rrunj DEFaul t

[: SOURce] : FREQuency: MULTi pl i er: STEP[: | NCRenent] ?

Memory Subsystem

: MEMory: CATal og[: ALL] ?

: MEMory: CATal og: TABLe?

: MEMory: CATal og: MACRo

:MEMOry: RAM I NI Ti al i ze

: MEMory: TABLe:

FREQuency freq,...freq| M N num MAXi num

: MEMory: TABLe:

FREQuency? M N mum MAXi num

: MEMory: TABLe:

FREQuency: PO Nt s?

: MEMory: TABLe:

LOSY : MAGN tude] cf,...cf|MN munj MM num

: MEMory: TABLe:

LCSS : MAGN t ude] ?

: MEMory: TABLe:

LOSY : MAGN tude] : PO Nt s?

: MEMory: TABLe:

SElLect tabl eno

: MEMory: TABLe:

SElLect ?

2| zZz|zZ2|z2|2Z2|2|Z2|2| 2| 2| 2| <

2| zZz|zZ2|z2|2Z2|2|Z2|2| 2| 2| 2| <

Modulation Subsystem

[: SOURce] : MDul at i on: ACFF

<

[SOURce] : MCDul at i on: STATe ON OFF

Chapter 4

331

Command Reference
SCPI Command Compatibility

Table 4-11

8373xB and 8371xB SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[SQURce] : MCDul at i on: STATe?

Y

Output Subsystem

: QUTPut : | MPedance?

: QUTPut : PROTect i on[: STATe] ON CFF

: QUTPut : PROTect i on[: STATe] ?

: QUTPuUt [: STATe] ON OFF| 1| 0

: QUTPut [: STATe] ?

<| <| 2| 2| Z

<| <| 2| 2| Z

Phase Modulation Subsystem

: SOURce]

:PM COUPl i ng A DC

: SQURce]

:PM:DEViation] <val><unit>

: SQURce] :

PM : DEMi ation] : STEP] : | NCRerrent |

: SQURce] :

PM I NTer nal : FREQuency <val ><uni t >

: SQURce] :

PM I NTer nal : FREQuency: STEF[: | NCRement]

[
[
[
[
[
[

: SQURce] :

PM I NTernal : FUNG i on Sl Nusoi d| SQUar e| TR Angl €|

RAMP| UNI For m} GAUSsi an

< | <|=<|=<|=<|=<

SQURce]

- PM RANGe AUTQ| LOW H GH

SQURce] :

PM SENSitivity sens| M N nurmj MAXi nur DEFaul t

SQURce] :
SQURce] :

PM SCURce FEED
PM SOURce | NTer nal | EXTer nal

[:
[:
[:
[:
[:

SQURce] :

PM STATe ON CFF| 1|0

<| <z|z|<

Power Subsystem

[SOURce] : POMer: ALC. PVETer pnet er| M N nmun MAXi nunj DEFaul t

z

[: SOURce] : POMér: ALC. PVETer ?

332

Chapter 4

Table 4-11

8373xB and 8371xB SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[SQURce] : POMér: ALC. PMETer : STEP i ncr| M N munj MAXI nurrj
DEFaul t

N

N

: SQURce] :

PONer : ALC. PMETer : STEP?

: SQURce] :
: SQURce] :

POMer : ALC. SOURce PMETer
POMr: ALC. SOURce | NTernal | DI CDe

: SQURce] :

POMer : ALC SQURce?

: SQURce] :
: SQURce] :

PONer : ATTenuat i on: AUTO ONCE
POMer : ATTenuat i on: AUTO ON OFF

: SQURce] :

POMr : ATTenuat i on: AUTO?

- SOURce]

DEFaul t

:POMr[: LEVel] anpl | M N murmj MAX munj UP| DOMN|

<|<| <z|=<|=<2z|2z

<|<| <z|=<|=<2z|2z

SQURce]

. PONr[: LEVel 1 ?

SQURce]

: POMer[: LEVel] : STEP i ncr| M N nmunj MAXi nunj DEFaul t

SOURce]

: POMer [: LEVel | : STEP?

SQURce]

: POMer: PROTect i on: STATe QN OFF

[:
[:
[:
[:
[:

SQURce]

: POMr : PROTect i on: STATe?

z|lz| <| <] <

z|lz| <| <] <

Pulse Modulation Subsystem

: SOURce]

: PULM EXTernal : PCLarity NCRval | | Nverted

: SOURce]

: PULM EXTernal : PQLarity?

: SQURce] :

PU_LM SQURce | NTer nal | EXTer nal

: SQURce] :

PULM SCURce?

: SQURce] :

PULM STATe O\ CFF| 1|0

[
[
[
[
[
[

: SQURce] :

PULM STATe?

<| <] <|=<|=<|=<

Chapter 4

333

Command Reference
SCPI Command Compatibility

Table 4-11

8373xB and 8371xB SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

Pulse Subsystem

[: SOURce] :

DEFaul t

PULSe:

DELay del ay| M Nl nunj MAX rmurj UP| DOAN

: SQURce] :

PULSe:

DELay?

: SQURce] :

PULSe:

DELay: STEP <nune[<tine suffix>] [DEFaul t]

: SQURce] :

PULSe:

DELay: STEP? [DEFaul t]

: SQURce] :

PULSe:

DOUBI e[: STATE] ON CGFF

: SQURce] :

PULSe:

DOUB! €[: STATE] ?

DEFaul t

: SQURce] :

PULSe:

FREQuency freq| M N num MAXI munj UP| DOAN

<|lz|lz|=<|=<|<x<

: SQURce] :

PULSe:

FREQuency?

: SQURce] :

PULSe:

FREQuency: STEP freq| DEFaul t

: SQURce] :

PULSe:

FREQuency: STEP? [M N MAX| DEF]

: SQURce] :

PULSe:

PER od <nun®[<tine suffix>]| UP| DOAN

: SQURce] :

PULSe:

PER od?

: SQURce] :

PULSe:

PER od: STEP <nun®[<tine suffix>]

: SQURce] :

PULSe:

PER od: STEP?

: SQURce] :

PULse:

TRANSI tion[: LEAD ng] SLON MED unj FAST

: SQURce] :

PULSe:

TRANsi tion[: LEAD ng] ?

: SQURce] :

PULSe:

TRANsi tion: STATe ON OFF

: SQURce] :

PULSe:

TRANsi t i on: STATe?

: SQURce] :

PULSe

:WDTh MAXI munj M N nunj UP| DOMN| DEFaul t

—_ | —_—] —_—_] —_] —_] — | —_] —] — | —] —] —

: SQURce] :

PULSe

:WDTh? [MAX numj M N munj DEFaul t]

<|=<lz|lzlz|lz|<|=<|=<|=<|<|<]|<<

334

Chapter 4

Table 4-11

8373xB and 8371xB SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[SOURce] : PULSe: W DTh: STEP <nun®[<ti me suf fi x>] | DEFaul t

Y

[SOURce] : PULSe: W DTh: STEP? [M N rmunj MAXi nunj DEFaul t]

Y

Reference Oscillator Subsystem

[SOURce] : RCBA | | at or : SOURce?

Status Subsystem

. STATuS:

CPERat i on: CONDi ti on?

: STATus:

OPERat i on: ENABI e <val ue>

. STATuS:

CPERat i on: ENABI e?

. STATuS:

CPERat i on[: EVENt] ?

: STATus:

OPERat i on: NTRansi ti on <val ue>

. STATuS:

CPERat i on: NTRansi ti on?

. STATuS:

CPERat i on: PTRansi ti on <val ue>

: STATus:

OPERat i on: PTRansi ti on?

. STATuS:

PRESet

. STATuS:

QUESti onabl e: CONDI ti on?

: STATus:

QUESti onabl e: ENABl e <val ue>

. STATuS:

QUESt i onabl e: ENABI e?

. STATuS:

QUESt i onabl e[: EVENt] ?

: STATus:

QUESti onabl e: NTRansi ti on <val ue>

. STATuS:

QUESt i onabl e: NTRansi ti on?

. STATuS:

QUESti onabl e: PTRansi ti on <val ue>

: STATus:

QUESti onabl e: PTRansi ti on?

<| <] <|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<]|<x

<| <] <|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<]|<x

Chapter 4

335

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B 83711B
N= Not supported by PSG Family 83{&328 835{28
System Subsystem
: SYSTem COMMUNI cat e: GPl B: ADDRess <nunber > Y Y
: SYSTem COMMUNI cat e: GPl B: ADDRess? Y Y
: SYSTem COMMuNI cat e: PMETer : ADDRess Y Y
: SYSTem COMMuNI cat e: PMETer : ADDRess? Y Y
: SYSTem ERRor ? Y Y
: SYSTem KEY keycode| M N murj MNAXi mum N N
: SYSTem KEY? N N
: SYSTem LANQuage " COMP=8673"| " CQOwPat i bi | i t y=8673" N N
: SYSTem LANGQuage " SCPI " Y Y
: SYSTem LANQuage? Y Y
: SYSTem PRESet Y Y
: SYSTem VERS on? Y Y
Trigger Subsystem
: TR Gger [: SEQuence| : STAR] : SOURce | Medi at e| EXTer nal N
: TR Gger [: SEQuence| : STAR] : SOURce? N
: TR Gger : SEQuence?2: STCP: SOURce | Mvedi at e| EXTer nal N
: TR Gger : SEQuence?2: STOP: SOURce? N
: TR Gger : SEQuence?2: SLOPe N
Unit Subsystem
:UNIT: FREQuency {<freq suffix>} N N
:UNI T: FREQuency? N N
SUNIT: POMr {<lvl suffix>} Y Y

336 Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B 83711B
N= Not supported by PSG Family 83{‘528 83{3{28
UNIT: PONer ? Y Y
CUNET: TIME N N
CUNT: T ME? N N
:UNIT: VOLTage {<lvl suffix>} N N
:UNIT: VOLTage? N N

a. The identification information can be modifed for the PSG to reflect the signal generator that is being replaced.
Refer to “:SYSTem:IDN” on page 294 for more information.
b. A multiplier of zero is not allowed.

Chapter 4 337

Command Reference
SCPI Command Compatibility

338 Chapter 4

Symbols

phase modulation subsystem keys
®M Tone 2 Ampl Percent of Peak softkey, 272
softkey, 269, 272, 273, 274, 276, 277, 278

Numerics

softkey, 279

1 kHz softkey, 279

10 kHz softkey, 279

100 kHz softkey, 279

8340B/41B, compatible commands, 295
836xxB/L, compatible commands, 309
8371xB, compatible commands, 327
8373xB, compatible commands, 327

A

abort function, 9
address
GPIB address, 7
IP address, 15
Adjust Phase softkey, 242
Agilent
BASIC, 35
SICL, 34
VISA, 34
Agilent BASIC, 4
Agilent VISA, 7, 14, 26
ALC Off On softkey, 282
All softkey, 179, 183
AM softkeys
AM Depth, 229, 230
AM Depth Couple Off On, 231
AM Mode Normal Deep, 222
AM Off On, 228
AM Path 1 2, 220
AM Rate, 226
AM Start Rate, 226
AM Stop Rate, 224
AM Sweep Rate, 225
AM Tone 1 Rate, 226
AM Tone 2 Ampl Percent Of Peak, 224
AM Tone 2 Rate, 224
AM Type LIN EXP, 229
Ampl softkeys
Ampl, 283
Ampl Offset, 286
Ampl Ref Off On, 284
Ampl Ref Set, 284

Index

Ampl Start, 285
Ampl Stop, 285
Amplitude hardkey, 283, 287
amplitude modulation subsystem keys
AM Depth, 229, 230
AM Depth Couple Off On, 231
AM Mode Normal Deep, 222
AM Off On, 228
AM Path 1 2, 220
AM Rate, 226
AM Start Rate, 226
AM Stop Rate, 224
AM Sweep Rate, 225
AM Tone 1 Rate, 226
AM Tone 2 Ampl Percent Of Peak, 224
AM Tone 2 Rate, 224
AM Type LIN EXP, 229
Dual-Sine, 227
Ext Coupling DC AC, 223
Ext Impedance 50 Ohm 600 Ohm, 223
Extl, 228
Ext2, 228
Gaussian, 226
Incr Set, 221, 232
Internal 1, 228
Internal 2, 228
Negative, 227
Noise, 227
Positive, 227
Ramp, 227
Sine, 227
Square, 227
Swept-Sine, 227
Triangle, 227
Uniform, 226
ascii, 12
Atten Hold Off On softkey, 283
Auto softkey, 279
automatic leveling control, 279, 282

B

backward compatible SCPI commands
*IDN? output, 294
8340B/41B, 295
836xxB/L, 309
8371xB, 327
8373xB, 327
BASIC

339

Index

ABORT, 9
CLEAR, 12
ENTER, 13
LOCAL, 11
LOCAL LOCKOUT, 10
OUTPUT, 12
REMOTE, 10
Binary softkey, 177, 185
binary values, 153
bit status, how and what to monitor, 105
bit values, 104
boolean SCPI parameters, 146
boolean, numeric response data, 148
Brightness softkey, 174
Bus softkey, 217, 225, 248, 259, 265, 273

C

C/C++, 4
include files, 33
calibration subsystem keys
DCFM/DC®M Cal, 162
clear command, 12
clear function, 12
CLS command, 108
command compatibility. See backwards
compatible SCPI commands
command prompt, 15, 91
command tree, SCPI, 143
commands, 9, 10, 11, 12, 13

comments, adding to Seq[n] Reg[nn] softkey, 184

communication subsystem keys

GPIB Address, 163

Hostname, 163

IP Address, 164

Meter Address, 164

Meter Channel A B, 165

Meter Timeout, 166

Power Meter, 165

Reset RS-232, 168

RS-232 Baud Rate, 166

RS-232 ECHO Off On, 167

RS-232 Timeout, 168

Trans/Recv Pace None Xon, 167, 169
computer interface, 3
condition registers

description, 113
Configure Cal Array softkey, 233, 234
controller, 8

Copy File softkey, 180, 186
correction subsystem keys
Configure Cal Array, 233, 234
Flatness Off On, 236
Load From Selected File, 233
Preset List, 235
Store To File, 235

D

data questionable filters
calibration transition, 134
frequency transition, 128
modulation transition, 132
power transition, 125
transition, 122

data questionable groups
calibration status, 133
frequency status, 127
modulation status, 130
power status, 124
status, 120

data questionable registers
calibration condition, 134
calibration event, 134
calibration event enable, 135
condition, 121
event, 122
event enable, 123
frequency condition, 128
frequency event, 129
frequency event enable, 129
modulation condition, 131
modulation event, 132
modulation event enable, 132
power condition, 125
power event, 126
power event enable, 126

data transfer, 3

dBm softkey, 219

dBuV softkey, 219

dBuVemf softkey, 219

DC softkey, 266

DCFM/DC®M Cal softkey, 162

decimal values, 153

Delete File softkey, 187

Delete softkeys
Delete All Binary Files, 181
Delete All Files, 181

340

Delete All List Files, 182
Delete All State Files, 182
Delete All UFLT Files, 182
Delete File, 183
developing programs, 33
Diagnostic Info softkey, 156, 170, 171, 172, 173
diagnostic subsystem keys
Diagnostic Info, 170, 171, 172, 173
Installed Board Info, 170
Options Info, 171, 172
discrete response data, 148
discrete SCPI parameters, 146
display contrast hardkeys, 175
display subsystem keys
Brightness, 174
display contrast, 175
Inverse Video Off On, 175
Update in Remote Off On, 176
Do Power Search softkey, 280
DOS prompt, 20
download libraries, 7, 14
Dual-Sine softkey, 227, 250, 266, 275
Dwell Type List Step softkey, 256

E

echo, lack of, 23
EnableRemote, 10
enter function, 13
Error Info softkey, 208
errors, 16
ESE commands, 108
event enable register
description, 113
event registers
description, 113
Ext softkey, 217
Ext softkeys
Ext, 225, 248, 259, 265, 273
Ext Coupling DC AC, 223, 245, 271
Ext Detector, 281
Ext Detector Coupling Factor, 281
Ext Impedance 50 Ohm 600 Ohm, 223, 246, 271
Ext Pulse, 292
Extl, 228, 276
Ext2, 228, 251, 276
Extl softkey, 251
extended numeric SCPI parameter, 145

Index

F
file
systems, 185
types, 185
file transfer, 24
files, 33
filters
See also transition filters
negative transition, description, 113
positive transition, description, 113
firmware status, monitoring, 105
Flatness Off On softkey, 236
FM softkeys
FM Dev, 252
FM Dev Couple Off On, 253
FM ®M Normal High BW, 270
FM Off On, 251
FM Path 1 2, 244
FM Rate, 249
FM Start Rate, 249
FM Stop Rate, 246
FM Sweep Rate, 247
FM Tone 1 Rate, 249
FM Tone 2 Amp Percent of Peak, 247
FM Tone 2 Rate, 246
forgiving listening and precise talking, 144
Free Run softkey, 217, 225, 248, 259, 265, 273
Freq softkeys
Freq, 237
Freq Multiplier, 238
Freq Offset, 238, 239
Freq Ref Off On, 239
Freq Ref Set, 239
Freq Start, 240
Freq Stop, 240
Frequency hardkey, 237, 241
frequency modulation subsystem keys
Bus, 248
Dual-Sine, 250
Ext, 248
Ext Coupling DC AC, 245
Ext Impedance 50 Ohm 600 Ohm, 246
Extl, 251
Ext2, 251
FM Dev, 252
FM Dev Couple Off On, 253
FM Off On, 251
FM Path 1 2, 244
FM Rate, 249

341

Index

FM Start Rate, 249

FM Stop Rate, 246

FM Sweep Rate, 247

FM Tone 1 Rate, 249

FM Tone 2 Amp Percent of Peak, 247

FM Tone 2 Rate, 246

Free Run, 248

Gaussian, 249

Incr Set, 245

Internal 1, 251

Internal 2, 251

Negative, 250

Noise, 250

Positive, 250

Ramp, 250

Sine, 250

Square, 250

Swept-Sine, 250

Triangle, 250

Trigger Key, 248

Uniform, 249
frequency subsystem keys

Adjust Phase, 242

Freq, 237

Freq Multiplier, 238

Freq Offset, 238, 239

Freq Ref Off On, 239

Freq Ref Set, 239

Freq Start, 240

Freq Stop, 240

Frequency, 237, 241

Phase Ref Set, 241

Ref Oscillator Source Auto Off On, 243
FTP, 24
Function Generator 1 softkey, 268
Function Generator 2 softkey, 268

G

Gaussian, 226
Gaussian softkey, 249, 267, 274
Getting Started Wizard, 8
GPIB, 3

address, 7

cables, 8

card installation, 5

configuration, 7

controller, 8

interface, 5

10 libraries, 7

listener, 8

on UNIX, 6

overview, 5

program examples, 34

SCPI commands, 9

talker, 8

verifying operation, 8
GPIB Address softkey, 163

H

hardware status, monitoring, 105
Help Mode Single Cont softkey, 209
hexadecimal values, 153
hostname, 15

configuration, 15
Hostname softkey, 163
HyperTerminal, 28

iabort, 9
ibloc, 11
ibstop, 9
ibwrt, 13
iclear, 12
IEEE 488.2 common command keys
Diagnostic Info, 156
RECALL Reg, 158
Run Complete Self Test, 161
Save Reg, 159
Save Seq[n] Reg[nn], 159
Select Seq:, 158
IEEE standard, 5
igpibllo, 11
Incr Set hardkey, 221, 232, 245, 270, 278
Incr Set, 289
Installed Board Info softkey, 170
instrument status, monitoring, 102
Int softkeys
Int Doublet, 292
Int Free-Run, 292
Int Gated, 292
Int Triggered, 292
integer response data, 147
interface, 3
interface cards, 5
Internal 1 softkeys, 228
Internal 2 softkeys, 228

342

Internal softkeys
Internal, 281
Internal 1, 251, 276
Internal 1 Monitor, 268
Internal 2, 251, 276
Internal 2 Monitor, 268
Internal Square, 292
Inverse Video Off On softkey, 175
10 libraries, 2, 3,5, 7, 9, 26
IP address, 15
configuration, 15
See also hostname
IP Address softkey, 164
iremote, 10

J

Java
example, 91

L

LabView, 4
LAN, 3
configuration, 15
hostname configuration, 15
interface, 3
10 libraries, 14
IP address configuration, 15
overview, 14
program examples, 64
sockets, 64
sockets LAN, 14
TELNET, 20
verifying operation, 15
VXI-11, 14, 64, 65
languages, 32
LF Out softkeys
LF Out Amplitude Into 50 Ohms, 263
LF Out Freq, 266
LF Out Off On, 268
LF Out Start Freq, 266
LF Out Stop Freq, 263
LF Out Sweep Rate, 264
LF Out Tone 1 Freq, 266
LF Out Tone 2 Ampl % of Peak, 264
LF Out Tone 2 Freq, 263
libraries, 2, 3, 7, 9, 14, 26
List softkey, 178, 185
list/sweep subsystem keys
Points, 262

Index

Bus, 259
Dwell Type List Step, 256
Ext, 259
Free Run, 259
Load List From Step Sweep, 260
Manual Mode Off On, 258
Manual Point, 257
Preset List, 261
Step Dwell, 262
Sweep Direction Down Up, 254
Sweep Type List Step, 260
Trigger Key, 259
listener, 8
Load From Selected File softkey, 183, 187, 233
Load List From Step Sweep softkey, 260
local echo, lack of, 23
local function, 11
local lockout function, 10
low frequency output subsystem keys
Bus, 265
DC, 266
Dual-Sine, 266
Ext, 265
Free Run, 265
Function Generator 1, 268
Function Generator 2, 268
Gaussian, 267
Internal 1 Monitor, 268
Internal 2 Monitor, 268
LF Out Amplitude Into 50 Ohms, 263
LF Out Freq, 266
LF Out Off On, 268
LF Out Start Freq, 266
LF Out Stop Freq, 263
LF Out Sweep Rate, 264
LF Out Tone 1 Freq, 266
LF Out Tone 2 Ampl % of Peak, 264
LF Out Tone 2 Freq, 263
Negative, 267
Noise, 266
Positive, 267
Ramp, 266
Sine, 266
Square, 266
Swept-Sine, 266
Triangle, 266
Trigger Key, 265
Uniform, 267

343

Index

M

Manual Mode Off On softkey, 258
manual operation, 10
Manual Point softkey, 257
mass memory subsystem keys
Binary, 185
Copy File, 186
Delete File, 187
List, 185
Load From Selected File, 187
Rename File, 188
State, 185
Store To File, 188
User Flatness, 185
memory subsystem keys
All, 179, 183
Binary, 177
Copy File, 180
Delete All Binary Files, 181
Delete All Files, 181
Delete All List Files, 182
Delete All State Files, 182
Delete All UFLT Files, 182
Delete File, 183
List, 178
Load From Selected File, 183
Rename File, 184
Seq[n] Reg[nn], adding comment, 184
State, 178
Store To File, 184
User Flatness, 179
Meter Address softkeys, 164
Meter Channel A B softkey, 165
Meter Timeout softkey, 166
Mod On/Off hardkey, 189
MS-DOS Command Prompt, 15
mV softkey, 219
mVemf softkey, 219

N

National Instruments

NI-488.2, 34

N1-488.2 include files, 33

VISA, 34
National Instruments VISA, 7, 14, 26
Negative softkey, 227, 250, 267, 275
negative transition filter, description, 113
NI-488.2, 7, 14, 26

EnableRemote, 10

iblcr, 12

ibloc, 11

ibrd, 13

ibstop, 9

ibwrt, 13

SetRWLS, 11
Noise softkey, 227, 250, 266, 275
numeric boolean response data, 148
numeric SCPI parameter, 144
numeric, extended SCPI parameter, 145

O

octal values, 153
OPC commands, 108
Options Info softkey, 171, 172
output command, 12
output function, 12
output subsystem keys
Mod On/Off, 189
RF On/Off, 189

P

parameter types. See SCPI commands parameter
types

paths, SCPI command tree, 143

PCI-GPIB, 34

PERL

example, 89
personal computer, PC, 5
®M Tone 2 Ampl Percent of Peak, 272
phase modulation subsystem keys
®M Dev, 277
®M Dev Couple Off On, 278
®M Off On, 276
®M Path 1 2, 269
®M Rate, 274
®M Start Rate, 274
®M Stop Rate, 272
®M Sweep Rate, 273
®M Tone 1 Rate, 274
®M Tone 2 Ampl Percent of Peak, 272
®M Tone 2 Rate, 272
Bus, 273
Dual-Sine, 275
Ext, 273
Ext Coupling DC AC, 271
Ext Impedance 50 Ohm 600 Ohm, 271

344

Extl, 276

Ext2, 276

FM ®M Normal High BW, 270

Free Run, 273

Gaussian, 274

Incr Set, 270, 278

Internal 1, 276

Internal 2, 276

Negative, 275

Noise, 275

Positive, 275

Ramp, 275

Sine, 275

Square, 275

Swept-Sine, 275

Triangle, 275

Trigger Key, 273

Uniform, 274
Phase Ref Set softkey, 241
ping program, 15
polling method (status registers), 106
ports, 69
Positive softkey, 227, 250, 267, 275
positive transition filter, description, 113
Power Meter softkey, 165
Power On Last Preset softkey, 210
Power Search Manual Auto softkey, 280
power subsystem keys

100 Hz, 279

1 kHz, 279

10 kHz, 279

100 kHz, 279

ALC Off On, 282

Ampl, 283

Ampl Offset, 286

Ampl Ref Off On, 284

Ampl Ref Set, 284

Ampl Start, 285

Ampl Stop, 285

Amplitude, 283, 287

Atten Hold Off On, 283

Auto, 279

Do Power Search, 280

Ext Detector, 281

Ext Detector Coupling Factor, 281

Internal, 281

Power Search Manual Auto, 280

Set ALC Level, 280

Set Atten, 282

Index

Source Module, 281
precise talking and forgiving listening, 144
Preset hardkey, 210
Preset List softkey, 235, 261
Preset Normal User softkey, 212
programming languages, 32
pulse modulation subsystem keys

Ext Pulse, 292

Incr Set, 289

Int Doublet, 292

Int Free-Run, 292

Int Gated, 292

Int Triggered, 292

Internal Square, 292

Pulse Delay, 288

Pulse Off On, 293

Pulse Period, 290

Pulse Rate, 289

Pulse Width, 291
Pulse softkeys

Pulse Delay, 288

Pulse Off On, 293

Pulse Period, 290

Pulse Rate, 289

Pulse Width, 291

Q

quotes, SCPI command use of, 152

R

Ramp softkey, 227, 250, 266, 275
real response data, 147
RECALL Reg softkey, 158
Ref Oscillator Source Auto Off On softkey, 243
register system overview, 102
registers
See also status registers
condition, description, 113
data questionable calibration condition, 134
data questionable calibration event, 134
data questionable calibration event enable, 135
data questionable condition, 121
data questionable event, 122
data questionable event enable, 123
data questionable frequency condition, 128
data questionable frequency event, 129
data questionable frequency event enable, 129
data questionable modulation condition, 131

345

Index

data questionable modulation event, 132
data questionable modulation event enable, 132
data questionable power condition, 125

data questionable power event, 126

data questionable power event enable, 126

in status groups (descriptions), 113
overall system, 103
standard event status, 115
standard event status enable, 116
standard operation condition, 118
standard operation event, 119
standard operation event enable, 119
status byte, 111

remote
annunciator, 94

remote function, 10

remote interface, 2
GPIB, 6
LAN, 15
RS-232, 26

Rename File, 184

Rename File softkey, 188

Reset RS-232 softkey, 168

response data types. See SCPI commands

response types

RF On/Off hardkey, 189
RS-232, 3

address, 94

baud rate, 27

cable, 27

configuration, 27

echo, 27

flow control, 27

format parameters, 29

interface, 27

10 libraries, 26

overview, 26

program examples, 93

settings, baud rate, 94

verifying operation, 28
RS-232 Baud Rate softkey, 166
RS-232 ECHO 0ff On softkeys, 167
RS-232 Timeout softkeys, 168
Run Complete Self Test softkey, 161

S

Save Reg softkey, 159
Save Seq[n] Reg[nn] softkey, 159

Save User Preset softkey, 212
SCPI, 4,5
SCPI command subsystems
amplitude modulation, 220
calibration, 162
communication, 163
correction, 233
diagnostic, 170
display, 174
frequency, 237
frequency modulation, 244
IEEE 488.2 common commands, 154
list/sweep, 254
low frequency output, 263
mass memory, 185
memory, 177
output, 189
phase modulation, 269
power, 279
pulse modulation, 288
status, 190
system, 208
trigger, 215
unit, 219
SCPI commands. See table of contents
SCPI commands, 9
backward compatible
*IDN? output, 294
8340B/41B, 295
836xxB/L, 309
8371xB, 327
8373xB, 327
command tree paths, 143
for status registers
IEEE 488.2 common commands, 108
parameter and response types, 144
parameter types
boolean, 146
discrete, 146
extended numeric, 145
numeric, 144
string, 147
response data types
discrete, 148
integer, 147
numeric boolean, 148
real, 147
string, 148
root command, 143

346

SCPI register model, 102
Screen Saver softkeys
Screen Saver, 213
Screen Saver Delay:, 213
Screen Saver Off On, 214
Select Seq: softkey, 158
service request method (status registers), 106
service request method, using, 107
Set ALC Level softkey, 280
Set Atten softkey, 282
SetRWLS, 11
SICL, 7, 14, 26, 34
iabort, 9
iclear, 12
igpibllo, 11
iprintf, 13
iremote, 10
iscanf, 13
signal generator
monitoring status, 102
Sine softkey, 227, 250, 266, 275
Single Sweep softkey, 216
sockets
example, 69, 72
Java, 91
LAN, 64, 69
PERL, 89
UNIX, 69
Windows, 70
sockets LAN, 19
dM Rate, 274
®M Start Rate, 274
®M Stop Rate, 272
®M Sweep Rate, 273
®M Tone 1 Rate, 274
®M Tone 2 Rate, 272
softkey, 183, 184, 215, 262
Points, 262
100 Hz, 279
®M Dev, 277
®M Dev Couple Off On, 278
dM Off On, 276
®M Path 1 2, 269
®M Tone 2 Ampl Percent of Peak, 272
phase modulation subsystem keys
®M Dev Couple Off On, 278
softkeys
Diagnostic Info, 156
Extl, 251

Index

RECALL Reg, 158

Run Complete Self Test, 161

Save Reg, 159

Save Seq[n] Reg[nn], 159

Select Seq:, 158
Source Module softkey, 281
Square softkey, 227, 250, 266, 275
SRE commands, 108
SRQ command, 107
SRQ method (status registers), 106
standard event status enable register, 116
standard event status group, 114
standard event status register, 115
standard operation condition register, 118
standard operation event enable register, 119
standard operation event register, 119
standard operation status group, 117
standard operation transition filters, 119
State softkey, 178, 185
status byte

overall register system, 103
status byte group, 110
status byte register, 111
status groups

data questionable, 120

data questionable calibration, 133

data questionable frequency, 127

data questionable modulation, 130

data questionable power, 124

registers, 113

standard event, 114

standard operation, 117

status byte, 110
status registers

See also registers

accessing information, 105

bit values, 104

hierarchy, 102

how and what to monitor, 105

in status groups, 113

overall system, 103

programming, 101

SCPI commands, 108

SCPI model, 102

setting and querying, 108

standard event, 115

standard event status enable, 116

system overview, 102

using, 104

347

Index

STB command, 108
Step Dwell softkey, 262
Store To File softkey, 184, 188, 235
string response data, 148
string SCPI parameter, 147
strings, quote usage, 152
subsystems, SCPI commands. See SCPI command
subsystems

Sweep Direction Down Up softkey, 254
Sweep Repeat Single Cont, 215
Sweep Type List Step softkey, 260
Swept-Sine softkey, 227, 250, 266, 275
system requirements, 33
system subsystem keys

Error Info, 208

Help Mode Single Cont, 209

Power On Last Preset, 210

Preset, 210

Preset Normal User, 212

Save User Preset, 212

Screen Saver Delay:, 213

Screen Saver Mode, 213

Screen Saver Off On, 214

View Next Error Message, 208

T

talker, 8
TCP/IP, 19
TELNET
example, 23
UNIX, 22
using, 20
Trans/Recv Pace None Xon softkey, 167, 169
transition filters
See also filters
data questionable, 122
data questionable calibration, 134
data questionable frequency, 128
data questionable modulation, 132
data questionable power, 125
description, 113
standard operation, 119
Triangle softkey, 227, 250, 266, 275
Trigger softkeys
Trigger In Polarity Neg Pos, 217
Trigger Key, 217, 225, 248, 259, 265, 273
Trigger Out Polarity Neg Pos, 216
trigger subsystem keys

Bus, 217, 225

Ext, 217, 225

Free Run, 217, 225

Single Sweep, 216

Sweep Repeat Single Cont, 215

Trigger In Polarity Neg Pos, 217

Trigger Key, 217, 225

Trigger Out Polarity Neg Pos, 216
troubleshooting

ping response errors, 16

RS-232, 29

U

Uniform, 226
Uniform softkey, 249, 267, 274
unit subsystem keys

dBm, 219

dBuV, 219

dBuVemf, 219

mV, 219

mVemf, 219

uV, 219

uVemf, 219
UNIX, 5
UNIX TELNET command, 23
Update in Remote Off On softkey, 176
User Flatness softkey, 179, 185
uV softkey, 219
uVemf softkey, 219

\Y

View Next Error Message softkey, 208
ViPrintf, 12
VISA, 7, 14, 26
include files, 33
library, 34
scanf, 13
viClear, 12
ViPrintf, 12
viTerminate, 9
VISA Assistant, 8
Visual Basic, 4
viTerminate, 9
VXI-11, 17, 64
programming, 65
with SICL, 65
with VISA, 66

348

	Programming Guide
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	IO Libraries
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting IO Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function

	Using LAN
	1. Selecting IO Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using TELNET LAN
	Using FTP

	Using RS-232
	1. Selecting IO Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	Interface Check Using NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Examples
	Before Using the Examples
	VXI-11 Programing
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group

	4 Command Reference
	Command Reference Information
	SCPI Command Listings
	Softkey and Hardkey Cross Reference
	Supported Signal Generator Series

	SCPI Basics
	Common Terms
	Command Syntax
	Command Types
	Command Tree
	Command Parameters and Responses
	Program Messages
	File Name Variables
	MSUS (Mass Storage Unit Specifier) Variable
	Quote Usage with SCPI Commands
	Binary, Decimal, Hexadecimal, and Octal Formats

	IEEE 488.2 Common Commands
	*CLS
	*ESE
	*ESE?
	*ESR?
	*IDN?
	*OPC
	*OPC?
	*PSC
	*PSC?
	*RCL
	*RST
	*SAV
	*SRE
	*SRE?
	*STB?
	*TRG
	*TST?
	*WAI

	Calibration subsystem
	:DCFM

	Communication Subsystem
	:GPIB:ADDRess
	:LAN:HOSTname
	:LAN:IP
	:PMETer:ADDRess
	:PMETer:CHANnel
	:PMETer:IDN
	:PMETer:TIMEout
	:SERial:BAUD
	:SERial:ECHO
	:SERial:RECeive:PACE
	:SERial:RESet
	:SERial:TOUT
	:SERial:TRANsmit:PACE

	Diagnostic Subsystem
	[:CPU]:INFOrmation:BOARds
	[:CPU]:INFOrmation:CCOunt:ATTenuator
	[:CPU]:INFOrmation:CCOunt:PON
	[:CPU]:INFOrmation:DISPlay:OTIMe
	[:CPU]:INFOrmation:OPTions
	[:CPU]:INFOrmation:OPTions:DETail
	[:CPU]:INFOrmation:OTIMe
	[:CPU]:INFOrmation:REVision
	[:CPU]:INFOrmation:SDATe

	Display Subsystem
	:BRIGhtness
	:CAPture
	:CONTrast
	:INVerse
	:REMote
	[:WINDow][:STATe]

	Memory Subsystem
	:CATalog:BINary
	:CATalog:LIST
	:CATalog:STATe
	:CATalog:UFLT
	:CATalog[:ALL]
	:COPY[:NAME]
	:DATA
	:DELete:ALL
	:DELete:BINary
	:DELete:LIST
	:DELete:STATe
	:DELete:UFLT
	:DELete[:NAME]
	:FREE[:ALL]
	:LOAD:LIST
	:MOVE
	:STATe:COMMent
	:STORe:LIST

	Mass Memory Subsystem
	:CATalog
	:COPY
	:DATA
	:DELete[:NAME]
	:LOAD:LIST
	:MOVE
	:STORe:LIST

	Output Subsystem
	:MODulation[:STATe]
	[:STATe]

	Status Subsystem
	:OPERation:CONDition
	:OPERation:ENABle
	:OPERation:NTRansition
	:OPERation:PTRansition
	:OPERation[:EVENt]
	:PRESet
	:QUEStionable:CALibration:CONDition
	:QUEStionable:CALibration:ENABle
	:QUEStionable:CALibration:NTRansition
	:QUEStionable:CALibration:PTRansition
	:QUEStionable:CALibration[:EVENt]
	:QUEStionable:CONDition
	:QUEStionable:ENABle
	:QUEStionable:FREQuency:CONDition
	:QUEStionable:FREQuency:ENABle
	:QUEStionable:FREQuency:NTRansition
	:QUEStionable:FREQuency:PTRansition
	:QUEStionable:FREQuency[:EVENt]
	:QUEStionable:MODulation:CONDition
	:QUEStionable:MODulation:ENABle
	:QUEStionable:MODulation:NTRansition
	:QUEStionable:MODulation:PTRansition
	:QUEStionable:MODulation[:EVENt]
	:QUEStionable:NTRansition
	:QUEStionable:POWer:CONDition
	:QUEStionable:POWer:ENABle
	:QUEStionable:POWer:NTRansition
	:QUEStionable:POWer:PTRansition
	:QUEStionable:POWer[:EVENt]
	:QUEStionable:PTRansition
	:QUEStionable[:EVENt]

	System Subsystem
	:CAPability
	:ERRor[:NEXT]
	:HELP:MODE
	:PON:TYPE
	:PRESet
	:PRESet:ALL
	:PRESet:PERSistent
	:PRESet:TYPE
	:PRESet[:USER]:SAVE
	:SSAVer:DELay
	:SSAVer:MODE
	:SSAVer:STATe
	:VERSion

	Trigger Subsystem
	:ABORt
	:INITiate:CONTinuous[:ALL]
	:INITiate[:IMMediate][:ALL]
	:TRIGger:OUTPut:POLarity
	:TRIGger[:SEQuence]:SLOPe
	:TRIGger[:SEQuence]:SOURce
	:TRIGger[:SEQuence][:IMMediate]

	Unit Subsystem (:UNIT)
	:POWer

	Amplitude Modulation Subsystem
	:AM[1]|2...
	:AM:INTernal:FREQuency:STEP[:INCRement]
	:AM:MODE
	:AM[1]|2:EXTernal[1]|2:COUPling
	:AM[1]|2:EXTernal[1]|2:IMPedance
	:AM[1]|2:INTernal[1]:FREQuency:ALTernate
	:AM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:AM[1]|2:INTernal[1]:SWEep:RATE
	:AM[1]|2:INTernal[1]:SWEep:TRIGger
	:AM[1]|2:INTernal[1]|2:FREQuency
	:AM[1]|2:INTernal[1]|2:FUNCtion:NOISe
	:AM[1]|2:INTernal[1]|2:FUNCtion:RAMP
	:AM[1]|2:INTernal[1]|2:FUNCtion:SHAPe
	:AM[1]|2:SOURce
	:AM[1]|2:STATe
	:AM[1]|2:TYPE
	:AM[1]|2[:DEPTh]:EXPonential
	:AM[1]|2[:DEPTh][:LINear]
	:AM[1]|2[:DEPTh][:LINear]:TRACk
	:AM[:DEPTh]:STEP[:INCRement]

	Correction Subsystem ([:SOURce]:CORRection)
	:FLATness
	:FLATness:LOAD
	:FLATness:PAIR
	:FLATness:POINts?
	:FLATness:PRESet
	:FLATness:STORe
	[:STATe]

	Frequency Subsystem ([:SOURce])
	:FREQuency:FIXed
	:FREQuency:MODE
	:FREQuency:MULTiplier
	:FREQuency:OFFSet
	:FREQuency:OFFSet:STATe
	:FREQuency:REFerence
	:FREQuency:REFerence:STATe
	:FREQuency:STARt
	:FREQuency:STOP
	:FREQuency[:CW]
	:PHASe:REFerence
	:PHASe[:ADJust]
	:ROSCillator:SOURce
	:ROSCillator:SOURce:AUTO

	Frequency Modulation Subsystem ([:SOURce])
	:FM[1]|2...
	:FM:INTernal:FREQuency:STEP
	:FM[1]|2:EXTernal[1]|2:COUPLing
	:FM[1]|2:EXTernal[1]|2:IMPedance
	:FM[1]|2:INTernal[1]:FREQuency:ALTernate
	:FM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:FM[1]|2:INTernal[1]:SWEep:RATE
	:FM[1]|2:INTernal[1]:SWEep:TRIGger
	:FM[1]|2:INTernal[1]|2:FREQuency
	:FM[1]|2:INTernal[1]|2:FUNCtion:NOISe
	:FM[1]|2:INTernal[1]|2:FUNCtion:RAMP
	:FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe
	:FM[1]|2:SOURce
	:FM[1]|2:STATe
	:FM[1]|2[:DEViation]
	:FM[1]|2[:DEViation]:TRACk

	List/Sweep subsystem ([:SOURce])
	:LIST:DIRection
	:LIST:DWELl
	:LIST:DWELl:POINts
	:LIST:DWELl:TYPE
	:LIST:FREQuency
	:LIST:FREQuency:POINts
	:LIST:MANual
	:LIST:MODE
	:LIST:POWer
	:LIST:POWer:POINts
	:LIST:TRIGger:SOURce
	:LIST:TYPE
	:LIST:TYPE:LIST:INITialize:FSTep
	:LIST:TYPE:LIST:INITialize:PRESet
	:SWEep:DWELl
	:SWEep:POINts

	Low Frequency Output Subsystem ([:SOURce]:LFOutput)
	:AMPLitude
	:FUNCtion[1]:FREQuency:ALTernate
	:FUNCtion[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:FUNCtion[1]:SWEep:RATE
	:FUNCtion[1]:SWEep:TRIGger
	:FUNCtion[1]|2:FREQuency
	:FUNCtion[1]|2:SHAPe
	:FUNCtion:NOISe
	:FUNCtion[1]|2:SHAPe:RAMP
	:SOURce
	LF Out softkeys:LF Out Off On;low frequency output subsystem keys:LF Out Off On

	Phase Modulation subsystem
	:PM[1]|2...
	:PM:INTernal:FREQuency:STEP[:INCRement]
	:PM[1]|2:BANDwidth|BWIDth
	:PM[1]|2:EXTernal[1]|2:COUPling
	:PM[1]|2:EXTernal[1]|2:IMPedance
	:PM[1]|2:INTernal[1]:FREQuency:ALTernate
	:PM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:PM[1]|2:INTernal[1]:SWEep:RATE
	:PM[1]|2:INTernal[1]:SWEep:TRIGger
	:PM[1]|2:INTernal[1]|2:FREQuency
	:PM[1]|2:INTernal[1]|2:FUNCtion:NOISe
	:PM[1]|2:INTernal[1]|2:FUNCtion:RAMP
	:PM[1]|2:INTernal[1]|2:FUNCtion:SHAPe
	:PM[1]|2:SOURce
	:PM[1]|2:STATe
	:PM[1]|2[:DEViation]
	:PM[1]|2[:DEViation]:TRACk
	:PM[:DEViation]:STEP[:INCRement]

	Power Subsystem ([:SOURce])
	:POWer:ALC:BANDwidth|BWIDth
	:POWer:ALC:BANDwidth|BWIDth:AUTO
	:POWer:ALC:LEVel
	:POWer:ALC:SEARch
	:POWer:ALC:SOURce
	:POWer:ALC:SOURce:EXTernal:COUPling
	:POWer:ALC[:STATe]
	:POWer:ATTenuation
	:POWer:ATTenuation:AUTO
	:POWer:MODE
	:POWer:REFerence
	:POWer:REFerence:STATe
	:POWer:STARt
	:POWer:STOP
	:POWer[:LEVel][:IMMediate]:OFFSet
	:POWer[:LEVel][:IMMediate][:AMPLitude]

	Pulse Modulation Subsystem ([:SOURce])
	:PULM:INTernal[1]:DELay
	:PULM:INTernal[1]:DELay:STEP
	:PULM:INTernal[1]:FREQuency
	:PULM:INTernal[1]:PERiod
	:PULM:INTernal[1]:PERiod:STEP[:INCRement]
	:PULM:INTernal[1]:PWIDth
	:PULM:INTernal[1]:PWIDth:STEP
	:PULM:SOURce
	:PULM:SOURce:INTernal
	:PULM:STATe

	SCPI Command Compatibility
	:SYSTem:IDN
	8340B/41B Compatible Commands (firmware ³ C.01.21)
	836xxB/L Compatible SCPI Commands
	8373xB and 8371xB Compatible SCPI Commands

	Index

